In mathematics, a hollow matrix may refer to one of several related classes of matrix: a sparse matrix; a matrix with a large block of zeroes; or a matrix with diagonal entries all zero.
A hollow matrix may be one with "few" non-zero entries: that is, a sparse matrix.[1]
A hollow matrix may be a square n × n matrix with an r × s block of zeroes where r + s > n.[2]
A hollow matrix may be a square matrix whose diagonal elements are all equal to zero.[3] That is, an n × n matrix A = (aij) is hollow if aij = 0 whenever i = j (i.e. aii = 0 for all i). The most obvious example is the real skew-symmetric matrix. Other examples are the adjacency matrix of a finite simple graph, and a distance matrix or Euclidean distance matrix.
In other words, any square matrix that takes the form ( 0 ∗ ∗ ∗ ∗ 0 ∗ ∗ ⋱ ∗ ∗ 0 ∗ ∗ ∗ ∗ 0 ) {\displaystyle {\begin{pmatrix}0&\ast &&\ast &\ast \\\ast &0&&\ast &\ast \\&&\ddots \\\ast &\ast &&0&\ast \\\ast &\ast &&\ast &0\end{pmatrix}}} is a hollow matrix, where the symbol ∗ {\displaystyle \ast } denotes an arbitrary entry.
For example, ( 0 2 6 1 3 4 2 0 4 8 0 9 4 0 2 933 1 4 4 0 6 7 9 23 8 0 ) {\displaystyle {\begin{pmatrix}0&2&6&{\frac {1}{3}}&4\\2&0&4&8&0\\9&4&0&2&933\\1&4&4&0&6\\7&9&23&8&0\end{pmatrix}}} is a hollow matrix.
This article about matrices is a stub. You can help Wikipedia by expanding it.