Matrix defined using smaller matrices called blocks
In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices.[1][2]
Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or partition it, into a collection of smaller matrices.[3][2] For example, the 3x4 matrix presented below is divided by horizontal and vertical lines into four blocks: the top-left 2x3 block, the top-right 2x1 block, the bottom-left 1x3 block, and the bottom-right 1x1 block.
Any matrix may be interpreted as a block matrix in one or more ways, with each interpretation defined by how its rows and columns are partitioned.
This notion can be made more precise for an by matrix by partitioning into a collection , and then partitioning into a collection . The original matrix is then considered as the "total" of these groups, in the sense that the entry of the original matrix corresponds in a 1-to-1 way with some offset entry of some , where and .[4]
The horizontal and vertical lines have no special mathematical meaning,[6][7] but are a common way to visualize a partition.[6][7] By this partition, is partitioned into four 2×2 blocks, as
Let . A partitioning of is a representation of in the form
,
where are contiguous submatrices, , and .[9] The elements of the partition are called blocks.[9]
By this definition, the blocks in any one column must all have the same number of columns.[9] Similarly, the blocks in any one row must have the same number of rows.[9]
Partitioning methods
A matrix can be partitioned in many ways.[9] For example, a matrix is said to be partitioned by columns if it is written as
,
where is the th column of .[9] A matrix can also be partitioned by rows:
and the same equation holds with the transpose replaced by the conjugate transpose.[9]
Block transpose
A special form of matrix transpose can also be defined for block matrices, where individual blocks are reordered but not transposed. Let be a block matrix with blocks , the block transpose of is the block matrix with blocks .[11] As with the conventional trace operator, the block transpose is a linear mapping such that .[10] However, in general the property does not hold unless the blocks of and commute.
Addition
Let
,
where , and let be the matrix defined in § Transpose. (This matrix will be reused in § Multiplication.) Then if , , , and , then
It is possible to use a block partitioned matrix product that involves only algebra on submatrices of the factors. The partitioning of the factors is not arbitrary, however, and requires "conformable partitions"[12] between two matrices and such that all submatrix products that will be used are defined.[13]
Two matrices and are said to be partitioned conformally for the product , when and are partitioned into submatrices and if the multiplication is carried out treating the submatrices as if they are scalars, but keeping the order, and when all products and sums of submatrices involved are defined.
— Arak M. Mathai and Hans J. Haubold, Linear Algebra: A Course for Physicists and Engineers[14]
Let be the matrix defined in § Transpose, and let be the matrix defined in § Addition. Then the matrix product
can be performed blockwise, yielding as an matrix. The matrices in the resulting matrix are calculated by multiplying:
If a matrix is partitioned into four blocks, it can be inverted blockwise as follows:
where A and D are square blocks of arbitrary size, and B and C are conformable with them for partitioning. Furthermore, A and the Schur complement of A in P: P/A = D − CA−1B must be invertible.[15]
Here, D and the Schur complement of D in P: P/D = A − BD−1C must be invertible.
If A and D are both invertible, then:
By the Weinstein–Aronszajn identity, one of the two matrices in the block-diagonal matrix is invertible exactly when the other is.
Determinant
The formula for the determinant of a -matrix above continues to hold, under appropriate further assumptions, for a matrix composed of four submatrices . The easiest such formula, which can be proven using either the Leibniz formula or a factorization involving the Schur complement, is
Using this formula, we can derive that characteristic polynomials of and are same and equal to the product of characteristic polynomials of and . Furthermore, If or is diagonalizable, then and are diagonalizable too. The converse is false; simply check .
This formula has been generalized to matrices composed of more than blocks, again under appropriate commutativity conditions among the individual blocks.[19]
For and , the following formula holds (even if and do not commute)
A block diagonal matrix is a block matrix that is a square matrix such that the main-diagonal blocks are square matrices and all off-diagonal blocks are zero matrices.[16] That is, a block diagonal matrix A has the form
where Ak is a square matrix for all k = 1, ..., n. In other words, matrix A is the direct sum of A1, ..., An.[16] It can also be indicated as A1 ⊕ A2 ⊕ ... ⊕ An[10] or diag(A1, A2, ..., An)[10] (the latter being the same formalism used for a diagonal matrix). Any square matrix can trivially be considered a block diagonal matrix with only one block.
A block diagonal matrix is invertible if and only if each of its main-diagonal blocks are invertible, and in this case its inverse is another block diagonal matrix given by
A block tridiagonal matrix is another special block matrix, which is just like the block diagonal matrix a square matrix, having square matrices (blocks) in the lower diagonal, main diagonal and upper diagonal, with all other blocks being zero matrices. It is essentially a tridiagonal matrix but has submatrices in places of scalars. A block tridiagonal matrix has the form
where , and are square sub-matrices of the lower, main and upper diagonal respectively.[24][25]
Block tridiagonal matrices are often encountered in numerical solutions of engineering problems (e.g., computational fluid dynamics). Optimized numerical methods for LU factorization are available[26] and hence efficient solution algorithms for equation systems with a block tridiagonal matrix as coefficient matrix. The Thomas algorithm, used for efficient solution of equation systems involving a tridiagonal matrix can also be applied using matrix operations to block tridiagonal matrices (see also Block LU decomposition).
A block Toeplitz matrix is another special block matrix, which contains blocks that are repeated down the diagonals of the matrix, as a Toeplitz matrix has elements repeated down the diagonal.
Kronecker product (matrix direct product resulting in a block matrix)
Jordan normal form (canonical form of a linear operator on a finite-dimensional complex vector space)
Strassen algorithm (algorithm for matrix multiplication that is faster than the conventional matrix multiplication algorithm)
Notes
^Eves, Howard (1980). Elementary Matrix Theory (reprint ed.). New York: Dover. p. 37. ISBN0-486-63946-0. Retrieved 24 April 2013. We shall find that it is sometimes convenient to subdivide a matrix into rectangular blocks of elements. This leads us to consider so-called partitioned, or block, matrices.
^ abDobrushkin, Vladimir. "Partition Matrices". Linear Algebra with Mathematica. Retrieved 2024-03-24.
^Anton, Howard (1994). Elementary Linear Algebra (7th ed.). New York: John Wiley. p. 30. ISBN0-471-58742-7. A matrix can be subdivided or partitioned into smaller matrices by inserting horizontal and vertical rules between selected rows and columns.
^ abcdefghijklmnStewart, Gilbert W. (1998). Matrix algorithms. 1: Basic decompositions. Philadelphia, PA: Soc. for Industrial and Applied Mathematics. pp. 18–20. ISBN978-0-89871-414-2.
^ abcdeGentle, James E. (2007). Matrix Algebra: Theory, Computations, and Applications in Statistics. Springer Texts in Statistics. New York, NY: Springer New York Springer e-books. pp. 47, 487. ISBN978-0-387-70873-7.
^Anton, Howard (1994). Elementary Linear Algebra (7th ed.). New York: John Wiley. p. 36. ISBN0-471-58742-7. ...provided the sizes of the submatrices of A and B are such that the indicated operations can be performed.
^Mathai, Arakaparampil M.; Haubold, Hans J. (2017). Linear Algebra: a course for physicists and engineers. De Gruyter textbook. Berlin Boston: De Gruyter. p. 162. ISBN978-3-11-056259-0.
^
Bernstein, Dennis (2005). Matrix Mathematics. Princeton University Press. p. 44. ISBN0-691-11802-7.
^ abcdefghAbadir, Karim M.; Magnus, Jan R. (2005). Matrix Algebra. Cambridge University Press. pp. 97, 100, 106, 111, 114, 118. ISBN9781139443647.
^Taboga, Marco (2021). "Determinant of a block matrix", Lectures on matrix algebra.
^Prince, Simon J. D. (2012). Computer vision: models, learning, and inference. New York: Cambridge university press. p. 531. ISBN978-1-107-01179-3.
^ abcdeBernstein, Dennis S. (2009). Matrix mathematics: theory, facts, and formulas (2 ed.). Princeton, NJ: Princeton University Press. pp. 168, 298. ISBN978-0-691-14039-1.
^Horn, Roger A.; Johnson, Charles R. (2017). Matrix analysis (Second edition, corrected reprint ed.). New York, NY: Cambridge University Press. p. 36. ISBN978-0-521-83940-2.
^Datta, Biswa Nath (2010). Numerical linear algebra and applications (2 ed.). Philadelphia, Pa: SIAM. p. 168. ISBN978-0-89871-685-6.
^ abStewart, Gilbert W. (2001). Matrix algorithms. 2: Eigensystems. Philadelphia, Pa: Soc. for Industrial and Applied Mathematics. p. 5. ISBN978-0-89871-503-3.
François Quesnay (1694-1774), Ia adalah seorang ekonom Prancis dan merupakan pemimpin intelektual physiocrats, yaitu sekolah sistematis pertama ekonomi di Prancis Tableau economique, 1965 François Quesnay (lahir, 2 Juni 1694 di Near Paris, Prancis - meninggal, 16 Desember 1774 di Versailles) adalah seorang ekonom Prancis dan pemimpin intelektual physiocrats, sekolah sistematis pertama ekonomi politik di Prancis.[1] Quesnay menjabat sebagai dokter konsultan untuk Raja Louis XV di Ver...
المقاطعة البريطانية بالقارة القطبية الجنوبيةمعلومات عامةالبداية 3 مارس 1962 الاسم الرسمي British Antarctic Territory (بالإنجليزية) الاسم الأصل British Antarctic Territory (بالإنجليزية) اللغة الرسمية الإنجليزية النشيد ليحفظ الله الملك القارة القارة القطبية الجنوبية البلد المملكة المتحدة العاصمة قا
American diplomat Elisabeth I. MillardUnited States Ambassador to TajikistanIn officeNovember 19, 2015 – August 31, 2017PresidentBarack ObamaDonald TrumpPreceded bySusan M. ElliottSucceeded byJohn M. Pommersheim Personal detailsBorn1954 (age 68–69)Alma materUniversity of GenevaLondon School of EconomicsJohns Hopkins University Elisabeth I. Millard (born 1954)[1] is an American diplomat who served as Principal Deputy Assistant Secretary for the State Department's ...
Sebuah bom surat yang disimpan di National Postal Museum Bom surat, yang juga disebut bom parsel, bom kiriman atau bom pos, adalah sebuah alat ledak yang dikirim melalui layanan pos, dan dirancang untuk melukai atau menewaskan penerima saat dibuka. Barang tersebut digunakan dalam pembunuhan yang menargetkan Israel dan dalam serangan teroris. Beberapa negara memiliki badan yang tugasnya menjinakkan bom surat dan penyelidikan pengeboman surat. Bom surat telah digunakan hampir selama layanan pos...
Pabellón de Venezuela 委内瑞拉国家馆 Pabellón de Venezuela en 2010.LocalizaciónPaís Venezuela y ChinaUbicación ShangháiChina ChinaInformación generalUsos PabellónEstilo BrutalistaParte de pabellones de la Expo 2010Finalización 2010Coste US$ 15 millonesDetalles técnicosSuperficie 2.900 m²Diseño y construcciónArquitecto Facundo BaudoinEsteban Karpati[editar datos en Wikidata] El Pabellón de Venezuela en la Expo 2010 fue la edificación que representó al paí...
Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW • CAPES • Google (N • L • A) (Fevereiro de 2020) Artillery Artillery no Metalmania 2008 Informação geral Origem Taastrup País Dinamarca Gênero(s) Thrash Metal Período em atividade 1982-19911998-20002007-actualmente Gravadora(s) Metal Blade Records Integrantes Mich...
Palais de la découverte (Cung khám phá) là một bảo tàng khoa học nằm tại Quận 8, Paris, trên đại lộ Franklin-Delano-Roosevelt. Bảo tàng được Jean Perrin (giải Nobel vật lý năm 1926) thành lập vào năm 1937 nhân dịp triển lãm thế giới Nghệ thuật và kỹ nghệ trong cuộc sống hiện đại. Palais de la découverte có diện tích 25.000 m², thuộc dãy phía Tây của Grand Palais do kiến trúc sư Albert-Félix-Théophile Thoma...
Transit system in Kaohsiung, Taiwan Kaohsiung MetroLogoOverviewOwnerKaohsiung City Government[a]LocaleKaohsiung, TaiwanTransit typeRapid transit, light railNumber of lines3[2]Number of stations61[2]Annual ridership50.889 million (2020) 25.97%[3]Websitewww.krtc.com.tw/eng/ OperationBegan operation2008-03-09Operator(s)Kaohsiung Rapid Transit CorporationTechnicalSystem length57.5 km (35.7 mi)[2]Track gauge1,435 mm (4 ft 8+1...
Canadian comic book creator Todd McFarlaneMcFarlane at the 2017 New York Comic ConBorn (1961-03-16) March 16, 1961 (age 62)Calgary, Alberta, CanadaArea(s)Writer, Penciller, Inker, PublisherNotable worksThe Amazing Spider-Man Batman: Year Two Haunt The Incredible Hulk Infinity, IncSpawnSpider-ManAwardsInkpot Award 1992[1]National Cartoonists Society Award 1992National Football League Artist of the Year 2005Spouse(s) Wanda Kolomyjec (m. 1985)Children3...
Halaman pertama 1 Korintus dalam Minuscule 223 Varian tekstual dalam Surat 1 Korintus (dan kitab-kitab Perjanjian Baru) muncul ketika seorang penyalin membuat sebuah perubahan yang disengaja atau tidak disengaja pada teks yang sedang direproduksi olehnya. Beberapa perubahan yang umum termasuk penghapusan, penataan ulang, pengulangan, atau penggantian satu atau beberapa kata ketika mata si penyalin beralih kembali dari salinannya ke naskah asli tetapi pada kata yang serupa di lokasi yang salah...
Phil CollinsInformasi latar belakangNama lahirPhilip David Charles CollinsLahir30 Januari 1951 (umur 72)Chiswick, London, EnglandGenreProgressive rock, Rock, Pop, Jazz rock, Big bandPekerjaanPenyanyi-penulis lagu, Musikus, AktorInstrumenVokal, Drum, Piano, Keyboards, Bagpipes, Gitar, BassTahun aktif1968–sekarangLabelVirgin, Atlantic, WEAArtis terkaitGenesis, Brand X, Flaming Youth, Philip Bailey, The Phil Collins Big BandSitus webphilcollins.co.uk Philip David Charles Collins (lahir 30...
John Tenniel: Au Revoir!, Punch 6 Agustus 1881 Permusuhan Prancis-Jerman (Prancis: Rivalité franco-allemande, Jerman: Deutsch–französische Erbfeindschaft) adalah istilah yang merujuk pada permusuhan dan revanchisme di antara orang-orang Jerman dan Prancis. Permusuhan ini muncul pada abad ke-16 dan selama Perang Prancis-Prusia pada tahun 1870–1871. Permusuhan Prancis-Jerman merupakan faktor penting dalam penyatuan Jerman, Perang Dunia I, dan Perang Dunia II. Permusuhan ini baru b...
Conferência Episcopal de Angola e São ToméQuadro profissionalSigla CEASTTipo conferência episcopalSede social LuandaPaíses AngolaSão Tomé e PríncipeOrganizaçãoPresidente José Manuel Imbamba (a partir de 11 de outubro de 2021)Website ceastangola.orgeditar - editar código-fonte - editar Wikidata A Conferência Episcopal de Angola e São Tomé (CEAST) é a assembleia dos bispos católicos de Angola e São Tomé e Príncipe. Tem a sua sede em Luanda. Dom Filomeno do Nascimento V...
National beauty pageant competition in Greece Not to be confused with Star GS Hellas. Star Hellas, Miss Hellas, Miss YoungΣταρ Ελλάς, Μις Ελλάς, Μις ΓιάνγκFormation1929; 94 years ago (1929)TypeBeauty pageantHeadquartersAthensLocation GreeceMembership Miss WorldMiss InternationalMiss Grand InternationalOfficial language GreekNational DirectorVassilis Prevelakis Star Hellas (Greek: Σταρ Ελλάς, Μις Ελλάς, Μις Γιάνγκ) is a...
Not to be confused with Mayors Square. This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Mayor Square – news · newspapers · books · scholar · JSTOR (February 2022) (Learn how and when to remove this template message) Mayor SquareNCI at Mayor Square, DublinNative nameCearnóg an Mhéara (Irish)NamesakeMayor StreetArea2,000 ...
Dutch cyclist Piet HoekstraHoekstra in 1963Personal informationBorn (1947-03-24) 24 March 1947 (age 76)Leeuwarden, Netherlands Piet Hoekstra (born 24 March 1947) is a Dutch former cyclist. He competed in the team pursuit at the 1968 Summer Olympics.[1] See also List of Dutch Olympic cyclists References ^ Piet Hoekstra Olympic Results. sports-reference.com. Archived from the original on 18 April 2020. Retrieved 21 September 2014. External links Piet Hoekstra at ProCyclingStats Pie...
English agriculturalist and pioneer co-operator For other people named William Lawson, see William Lawson (disambiguation). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (August 2020) (Learn how a...
American military writer This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (April 2019) (Learn how and when to remove this template message) William S. LindBorn (1947-07-09) July 9, 1947 (age 76)Cleveland, Ohio, United StatesNationalityAmericanOther namesThomas...
Private university in Ithaca, New York US Cornell redirects here. For the liberal arts college in Mount Vernon, Iowa, see Cornell College. For other uses, see Cornell (disambiguation). Cornell UniversityLatin: Universitas CornellianaTypePrivate[1] land-grant research universityEstablishedApril 27, 1865; 158 years ago (1865-04-27)Founder Ezra Cornell Andrew Dickson White AccreditationMSCHEAcademic affiliationsAAUCOFHENAICUSUNYURASea-grantSpace-grantEndowment$10.0 ...
2021 Thai television series This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (July 2020) Oh My BossFirst released posterThaiนายคะอย่ามาอ่อย GenreRomanceCreated byGMMTVFuKDuK ProductionStarring Worranit Thawornwong Luke Ishikawa Plowden Country of originThailandOriginal languageThaiProductionProduction companiesGMMTVFuKD...