Function problem

In computational complexity theory, a function problem is a computational problem where a single output (of a total function) is expected for every input, but the output is more complex than that of a decision problem. For function problems, the output is not simply 'yes' or 'no'.

Formal definition

A functional problem is defined by a relation over strings of an arbitrary alphabet :

An algorithm solves if for every input such that there exists a satisfying , the algorithm produces one such , and if there are no such , it rejects.

A promise function problem is allowed to do anything (thus may not terminate) if no such exists.

Examples

A well-known function problem is given by the Functional Boolean Satisfiability Problem, FSAT for short. The problem, which is closely related to the SAT decision problem, can be formulated as follows:

Given a boolean formula with variables , find an assignment such that evaluates to or decide that no such assignment exists.

In this case the relation is given by tuples of suitably encoded boolean formulas and satisfying assignments. While a SAT algorithm, fed with a formula , only needs to return "unsatisfiable" or "satisfiable", an FSAT algorithm needs to return some satisfying assignment in the latter case.

Other notable examples include the travelling salesman problem, which asks for the route taken by the salesman, and the integer factorization problem, which asks for the list of factors.

Relationship to other complexity classes

Consider an arbitrary decision problem in the class NP. By the definition of NP, each problem instance that is answered 'yes' has a polynomial-size certificate which serves as a proof for the 'yes' answer. Thus, the set of these tuples forms a relation, representing the function problem "given in , find a certificate for ". This function problem is called the function variant of ; it belongs to the class FNP.

FNP can be thought of as the function class analogue of NP, in that solutions of FNP problems can be efficiently (i.e., in polynomial time in terms of the length of the input) verified, but not necessarily efficiently found. In contrast, the class FP, which can be thought of as the function class analogue of P, consists of function problems whose solutions can be found in polynomial time.

Self-reducibility

Observe that the problem FSAT introduced above can be solved using only polynomially many calls to a subroutine which decides the SAT problem: An algorithm can first ask whether the formula is satisfiable. After that the algorithm can fix variable to TRUE and ask again. If the resulting formula is still satisfiable the algorithm keeps fixed to TRUE and continues to fix , otherwise it decides that has to be FALSE and continues. Thus, FSAT is solvable in polynomial time using an oracle deciding SAT. In general, a problem in NP is called self-reducible if its function variant can be solved in polynomial time using an oracle deciding the original problem. Every NP-complete problem is self-reducible. It is conjectured [by whom?] that the integer factorization problem is not self-reducible, because deciding whether an integer is prime is in P (easy),[1] while the integer factorization problem is believed to be hard for a classical computer. There are several (slightly different) notions of self-reducibility.[2][3][4]

Reductions and complete problems

Function problems can be reduced much like decision problems: Given function problems and we say that reduces to if there exists polynomially-time computable functions and such that for all instances of and possible solutions of , it holds that

  • If has an -solution, then has an -solution.

It is therefore possible to define FNP-complete problems analogous to the NP-complete problem:

A problem is FNP-complete if every problem in FNP can be reduced to . The complexity class of FNP-complete problems is denoted by FNP-C or FNPC. Hence the problem FSAT is also an FNP-complete problem, and it holds that if and only if .

Total function problems

The relation used to define function problems has the drawback of being incomplete: Not every input has a counterpart such that . Therefore the question of computability of proofs is not separated from the question of their existence. To overcome this problem it is convenient to consider the restriction of function problems to total relations yielding the class TFNP as a subclass of FNP. This class contains problems such as the computation of pure Nash equilibria in certain strategic games where a solution is guaranteed to exist. In addition, if TFNP contains any FNP-complete problem it follows that .

See also

References

  1. ^ Agrawal, Manindra; Kayal, Neeraj; Saxena, Nitin (2004). "PRIMES is in P" (PDF). Annals of Mathematics. 160 (2): 781–793. doi:10.4007/annals.2004.160.781. JSTOR 3597229.
  2. ^ Ko, K. (1983). "On self-reducibility and weak P-selectivity". Journal of Computer and System Sciences. 26 (2): 209–221. doi:10.1016/0022-0000(83)90013-2.
  3. ^ Schnorr, C. (1976). "Optimal algorithms for self-reducible problems". In S. Michaelson and R. Milner, Editors, Proceedings of the 3rd International Colloquium on Automata, Languages, and Programming: 322–337.
  4. ^ Selman, A. (1988). "Natural self-reducible sets". SIAM Journal on Computing. 17 (5): 989–996. doi:10.1137/0217062.
  • Raymond Greenlaw, H. James Hoover, Fundamentals of the theory of computation: principles and practice, Morgan Kaufmann, 1998, ISBN 1-55860-474-X, p. 45-51
  • Elaine Rich, Automata, computability and complexity: theory and applications, Prentice Hall, 2008, ISBN 0-13-228806-0, section 28.10 "The problem classes FP and FNP", pp. 689–694

Read other articles:

Republiek ToevaРеспублика Тува Autonome republiek in Rusland (Details) Locatie in Rusland Situering Federaal district Siberië Economische regio Oost-Siberië Hoofdstad Kyzyl Coördinaten 51°47'NB, 94°45'OL Algemeen Oppervlakte 168.606,3 km² (21e)(0,5% water) Inwoners (census 2002) 305.510 (77e)(1,81 inw./km²) Politiek President Sjolban Kara-ool Premier Aleksandr Brokert Overig Officiële talen Russisch, Toevaans Religie Tibetaans boeddhisme, sjamanisme, tengriisme Volk...

 

اجتماع عام مفتوح للجنة الاتصالات الفيدرالية (FCC). قانون البث هو فرع قانوني يبحث في مجال البث.[1][2] وتندرج هذه القوانين والأنظمة ضمن محطات الردايو والتلفاز، كما أنها ترتبط وبشكل كبير بخدمات الكبل التلفزيوني وكبل الراديو إضافة إلى  التلفاز الفضائي وراديو القمر ا...

 

العلاقات النيجرية الإسواتينية النيجر إسواتيني   النيجر   إسواتيني تعديل مصدري - تعديل   العلاقات النيجرية الإسواتينية هي العلاقات الثنائية التي تجمع بين النيجر وإسواتيني.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ...

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Fevereiro de 2021) Legacies Legados (BR) Legacies (série de televisão) Informação geral Formato série Gênero DramaFantasiaSuspense Duração 41–42 minutos Estado Cancelada Criador(es) Julie Plec País de origem  Estados U...

 

البطولة الوطنية التونسية 1979–80 تفاصيل الموسم الرابطة التونسية المحترفة الأولى لكرة القدم  النسخة 25  البلد تونس  المنظم الجامعة التونسية لكرة القدم  عدد المشاركين 14   الهداف الهادي البياري (14)[1] الدوري التونسي لكرة القدم 1978-1979  الدوري التونسي لكرة القدم 19...

 

Waterhouse F.C.Datos generalesNombre Waterhouse Football ClubApodo(s) Fire-HouseFundación 1968Presidente Peter HibbertEntrenador Marcel GayleInstalacionesEstadio Drewsland StadiumCapacidad 2500Ubicación Kingston, JamaicaUniforme Titular Alternativo Última temporadaLiga Liga Premier Nacional de Jamaica(2013-14) 1ºTítulos 3 (por última vez en 2013/14) Página web oficial[editar datos en Wikidata] El Waterhouse Football Club es un equipo de fútbol de Jamaica que milita en l...

Art school at the University of Oklahoma This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Weitzenhoffer Family College of Fine Arts – news · newspapers · books · scholar · JSTOR (April 2023) (Learn how and when to remove this template message) Weitzenhoffer Family College of Fine ArtsThe Donald W. Reynolds Ce...

 

2022 studio album by MarillionAn Hour Before It's DarkStudio album by MarillionReleased4 March 2022 (2022-03-04)Recorded2021Studio The Racket Club, Aylesbury, Buckinghamshire Real World, Box, Wiltshire Ace, Aartselaar, Belgium GenreNeo-progressive rockLength54:10LabelIntactearMUSICProducerMarillionMichael HunterMarillion chronology With Friends from the Orchestra(2019) An Hour Before It's Dark(2022) Professional ratingsReview scoresSourceRatingClassic Rock[1] An...

 

Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari List of Chancellors of Germany di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: p...

Герб штату Бразилії — офіційний символ штату, який має кожен штат. Список Штат Герб Акрі Алагоас Амазонас Амапа Баїя Гояс Еспіриту-Санту Мараньян Мату-Гросу Мату-Гросу-ду-Сул Мінас-Жерайс Пара Параїба Парана Пернамбуку Піауї Ріо-де-Жанейро Ріу-Гранді-ду-Норті Ріу-Гранді-...

 

Перелік об'єктів культурної спадщини Києва Правий берег Голосіївський район Байкове кладовище Оболонський район Печерський район Подільський район Святошинський район Солом'янський район Шевченківський район Лук'янівське кладовище Лівий берег Дарницький район Десн...

 

City in Khabarovsk Krai, Russia For other uses, see Khabarovsk (disambiguation). City in Khabarovsk Krai, RussiaKhabarovsk ХабаровскCity[1]View of Khabarovsk looking down the Ussuriysky Boulevard FlagCoat of armsAnthem: Anthem of Khabarovsk[3]Location of Khabarovsk KhabarovskLocation of KhabarovskShow map of RussiaKhabarovskKhabarovsk (Khabarovsk Krai)Show map of Khabarovsk KraiCoordinates: 48°29′N 135°05′E / 48.483°N 135.083°E / 48.483...

Chief executive of Luhansk Oblast, Ukraine Head of the Luhansk Regional Military–Civil AdministrationSeal of Luhansk OblastIncumbentArtem Lysohorsince 12 April 2023Term lengthFour yearsInaugural holderPetro Bogynya1938Formation1938 as Chairman of Executive Committee of Luhansk OblastWebsiteGovernment of Luhansk Oblast The administrative building in Luhansk at Teatralna Square, prior to the war in Donbass The governor of Luhansk Oblast is the head of the executive branch for the Luhansk...

 

2700 West Sugar Factory Road 703 2700 West Sugar Factory Road station platformGeneral informationLocation8351 South 2700 WestWest Jordan, UtahUnited StatesCoordinates40°35′57″N 111°57′24″W / 40.59904°N 111.95672°W / 40.59904; -111.95672Owned byUtah Transit Authority (UTA)Platforms1 island platformTracks2Connections UTA: 227[1]ConstructionStructure typeAt-gradeParking204 spaces[2]AccessibleYesHistoryOpenedAugust 7, 2011;...

 

Organized presentation and display of a selection of items or pictures For other uses, see Exhibition (disambiguation). Work by Paul Gauguin and Vincent van Gogh exhibited in the Carrières de Lumière in Les Baux-de-Provence, Bouches-du-Rhône through digital projection (2012) An exhibition, in the most general sense, is an organized presentation and display of a selection of items. In practice, exhibitions usually occur within a cultural or educational setting such as a museum, art gallery,...

Map of the European countries by GDP (nominal) per capita in 2021 (includes transcontinental countries)   ≥ 60,000   ≥ 30,000   ≥ 10,000   < 10,000 This is a list and map of European states by GDP per capita. The figures presented do not take into account differences in the cost of living in different countries, and the results vary greatly from one year to another based on fluctuations in the exchange rates of the country's currency. Such fluc...

 

American medical researcher Robert Foster Kennedy Dr Robert Foster Kennedy MD FRSE (7 February 1884 – 1952) was an Irish-born neurologist largely working in America. He gives his name to Foster-Kennedy syndrome, the Kaplan-Kennedy test and Kennedy's Syndrome. He was one of the first medical doctors to use electroconvulsive treatment for mental conditions and one of the first to recognise and define shell shock in the First World War.[1] Life He was born in Belfast on 7 February 1884...

 

Новый железнодорожный мост 44°47′58″ с. ш. 20°26′10″ в. д.HGЯO Официальное название серб. Novi železnički most Область применения железнодорожный Пересекает река Сава Место расположения Белград, Сербия Конструкция Тип конструкции вантовый мост Материал железоб...

River in the Dominican Republic Yaque del NorteRio Yaque del Norte, Dominican RepublicLocation of mouthLocationCountry Dominican RepublicProvincesLa Vega, Santiago, Valverde, Santiago Rodríguez, Monte CristiMajor citiesSantiago de los Caballeros, Mao, Jarabacoa, Guayubín, Monte Cristi, CastañuelasPhysical characteristicsMouthAtlantic Ocean • coordinates19°50′24″N 71°41′13″W / 19.84000°N 71.68694°W / 19.84000; -71.68694Length298&...

 

Алтайский (южноалтайский) язык Самоназвание алтай (алтайдыҥ) тил Страны Россия, Китай Регионы Республика Алтай, Алтайский край Официальный статус  Республика Алтай Общее число говорящих 68 700 (2020)[1] Статус есть угроза исчезновения[4] Классификация Категория Язы...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!