About 20 million kg per year are produced industrially as both a by-product of and precursor to the manufacture of Teflon.[2] It is produced by reaction of chloroform with HF:[3]
Fluoroform was first obtained by Maurice Meslans in the violent reaction of iodoform with dry silver fluoride in 1894.[5] The reaction was improved by Otto Ruff by substitution of silver fluoride by a mixture of mercury fluoride and calcium fluoride.[6] The exchange reaction works with iodoform and bromoform, and the exchange of the first two halogen atoms by fluorine is vigorous. By changing to a two step process, first forming a bromodifluoromethane in the reaction of antimony trifluoride with bromoform and finishing the reaction with mercury fluoride the first efficient synthesis method was found by Henne.[6]
When used as a fire suppressant, the fluoroform carries the DuPont trade name, FE-13. CHF3 is recommended for this application because of its low toxicity, its low reactivity, and its high density. HFC-23 has been used in the past as a replacement for Halon 1301(CFC-13B1) in fire suppression systems as a total flooding gaseous fire suppression agent.
Organic chemistry
Fluoroform is weakly acidic with a pKa = 25–28 and quite inert. Attempted deprotonation results in defluorination to generate F− and difluorocarbene (CF2). Some organocopper and organocadmium compounds have been developed as trifluoromethylation reagents.[7]
Fluoroform is a precursor of the Ruppert-Prakash reagent CF3Si(CH3)3, which is a source of the nucleophilic CF−3 anion.[8][9]
Greenhouse gas
CHF3 is a potent greenhouse gas. A ton of HFC-23 in the atmosphere has the same effect as 11,700 tons of carbon dioxide. This equivalency, also called a 100-yr global warming potential, is slightly larger at 14,800 for HFC-23.[10]
The atmospheric lifetime is 270 years.[10]
HFC-23 was the most abundant HFC in the global atmosphere until around 2001, when the global mean concentration of HFC-134a (1,1,1,2-tetrafluoroethane), the chemical now used extensively in automobile air conditioners, surpassed those of HFC-23. Global emissions of HFC-23 have in the past been dominated by the inadvertent production and release during the manufacture of the refrigerant HCFC-22 (chlorodifluoromethane).
Substantial decreases in HFC-23 emissions by developed countries were reported from the 1990s to the 2000s: from 6-8 Gg/yr in the 1990s to 2.8 Gg/yr in 2007.[11]
Developing countries have become the largest producers of HCFC-23 in recent years according to data compiled by the Ozone Secretariat of the World Meteorological Organization.[12][13][14] Emissions of all HFCs are included in the UNFCCCs Kyoto Protocol. To mitigate its impact, CHF3 can be destroyed with electric plasma arc technologies or by high temperature incineration.[15]
^Zanardi, Alessandro; Novikov, Maxim A.; Martin, Eddy; Benet-Buchholz, Jordi; Grushin, Vladimir V. (2011-12-28). "Direct Cupration of Fluoroform". Journal of the American Chemical Society. 133 (51): 20901–20913. doi:10.1021/ja2081026. ISSN0002-7863. PMID22136628.
^Rozen, S.; Hagooly, A. "Fluoroform" in Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette) 2004, J. Wiley & Sons, New York. doi:10.1002/047084289X.rn00522
^ abForster, P.; V. Ramaswamy; P. Artaxo; T. Berntsen; R. Betts; D.W. Fahey; J. Haywood; J. Lean; D.C. Lowe; G. Myhre; J. Nganga; R. Prinn; G. Raga; M. Schulz & R. Van Dorland (2007). "Changes in Atmospheric Constituents and in Radiative Forcing."(PDF). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.