In mathematics, the Aubin–Lions lemma (or theorem) is the result in the theory of Sobolev spaces of Banach space-valued functions, which provides a compactness criterion that is useful in the study of nonlinear evolutionary partial differential equations. Typically, to prove the existence of solutions one first constructs approximate solutions (for example, by a Galerkin method or by mollification of the equation), then uses the compactness lemma to show that there is a convergent subsequence of approximate solutions whose limit is a solution.
The result is named after the FrenchmathematiciansJean-Pierre Aubin and Jacques-Louis Lions. In the original proof by Aubin,[1] the spaces X0 and X1 in the statement of the lemma were assumed to be reflexive, but this assumption was removed by Simon,[2] so the result is also referred to as the Aubin–Lions–Simon lemma.[3]
Aubin, Jean-Pierre (1963). "Un théorème de compacité. (French)". C. R. Acad. Sci. Paris. Vol. 256. pp. 5042–5044. MR0152860.
Barrett, John W.; Süli, Endre (2012). "Reflections on Dubinskii's nonlinear compact embedding theorem". Publications de l'Institut Mathématique (Belgrade). Nouvelle Série. 91 (105): 95–110. arXiv:1101.1990. doi:10.2298/PIM1205095B. MR2963813. S2CID12240189.
Boyer, Franck; Fabrie, Pierre (2013). Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Applied Mathematical Sciences 183. New York: Springer. pp. 102–106. ISBN978-1-4614-5975-0. (Theorem II.5.16)
Lions, J.L. (1969). Quelque methodes de résolution des problemes aux limites non linéaires. Paris: Dunod-Gauth. Vill. MR0259693.
Roubíček, T. (2013). Nonlinear Partial Differential Equations with Applications (2nd ed.). Basel: Birkhäuser. ISBN978-3-0348-0512-4. (Sect.7.3)
Showalter, Ralph E. (1997). Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys and Monographs 49. Providence, RI: American Mathematical Society. p. 106. ISBN0-8218-0500-2. MR1422252. (Proposition III.1.3)