In mathematics, particularly in mathematical analysis and measure theory, an approximately continuous function is a concept that generalizes the notion of continuous functions by replacing the ordinary limit with an approximate limit.[1] This generalization provides insights into measurable functions with applications in real analysis and geometric measure theory.[2]
Let E ⊆ R n {\displaystyle E\subseteq \mathbb {R} ^{n}} be a Lebesgue measurable set, f : E → R k {\displaystyle f\colon E\to \mathbb {R} ^{k}} be a measurable function, and x 0 ∈ E {\displaystyle x_{0}\in E} be a point where the Lebesgue density of E {\displaystyle E} is 1. The function f {\displaystyle f} is said to be approximately continuous at x 0 {\displaystyle x_{0}} if and only if the approximate limit of f {\displaystyle f} at x 0 {\displaystyle x_{0}} exists and equals f ( x 0 ) {\displaystyle f(x_{0})} .[3]
A fundamental result in the theory of approximately continuous functions is derived from Lusin's theorem, which states that every measurable function is approximately continuous at almost every point of its domain.[4] The concept of approximate continuity can be extended beyond measurable functions to arbitrary functions between metric spaces. The Stepanov-Denjoy theorem provides a remarkable characterization:
Stepanov-Denjoy theorem: A function is measurable if and only if it is approximately continuous almost everywhere. [5]
Approximately continuous functions are intimately connected to Lebesgue points. For a function f ∈ L 1 ( E ) {\displaystyle f\in L^{1}(E)} , a point x 0 {\displaystyle x_{0}} is a Lebesgue point if it is a point of Lebesgue density 1 for E {\displaystyle E} and satisfies
where λ {\displaystyle \lambda } denotes the Lebesgue measure and B r ( x 0 ) {\displaystyle B_{r}(x_{0})} represents the ball of radius r {\displaystyle r} centered at x 0 {\displaystyle x_{0}} . Every Lebesgue point of a function is necessarily a point of approximate continuity.[6] The converse relationship holds under additional constraints: when f {\displaystyle f} is essentially bounded, its points of approximate continuity coincide with its Lebesgue points.[7]