In enzymology, an amidase (EC3.5.1.4, acylamidase, acylase (misleading), amidohydrolase (ambiguous), deaminase (ambiguous), fatty acylamidase, N-acetylaminohydrolase (ambiguous)) is an enzyme that catalyzes the hydrolysis of an amide. In this way, the two substrates of this enzyme are an amide and H2O, whereas its two products are monocarboxylate and NH3.
Amidases contain a conserved stretch of approximately 130 amino acids known as the AS sequence. They are widespread, being found in both prokaryotes and eukaryotes. AS enzymescatalyse the hydrolysis of amidebonds (CO-NH2), although the family has diverged widely with regard to substrate specificity and function. Nonetheless, these enzymes maintain a core alpha/beta/alpha structure, where the topologies of the N- and C-terminal halves are similar. AS enzymes characteristically have a highly conserved C-terminal region rich in serine and glycine residues, but devoid of aspartic acid and histidine residues, therefore they differ from classical serine hydrolases. These enzymes possess a unique, highly conserved Ser-Ser-Lys catalytic triad used for amide hydrolysis, although the catalytic mechanism for acyl-enzyme intermediate formation can differ between enzymes.[1]
Examples of AS signature-containing enzymes include:
Subunit A of Glu-tRNA(Gln) amidotransferase,[4] a heterotrimeric enzyme that catalyses the formation of Gln-tRNA(Gln) by the transamidation of misacylated Glu-tRNA(Gln) via amidolysis of glutamine.
Structural studies
This section needs to be updated. Please help update this article to reflect recent events or newly available information.(May 2017)