Protein superfamily

A protein superfamily is the largest grouping (clade) of proteins for which common ancestry can be inferred (see homology). Usually this common ancestry is inferred from structural alignment[1] and mechanistic similarity, even if no sequence similarity is evident.[2] Sequence homology can then be deduced even if not apparent (due to low sequence similarity). Superfamilies typically contain several protein families which show sequence similarity within each family. The term protein clan is commonly used for protease and glycosyl hydrolases superfamilies based on the MEROPS and CAZy classification systems.[2][3]

Identification

Above, secondary structural conservation of 80 members of the PA protease clan (superfamily). H indicates α-helix, E indicates β-sheet, L indicates loop. Below, sequence conservation for the same alignment. Arrows indicate catalytic triad residues. Aligned on the basis of structure by DALI

Superfamilies of proteins are identified using a number of methods. Closely related members can be identified by different methods to those needed to group the most evolutionarily divergent members.

Sequence similarity

A sequence alignment of mammalian histone proteins. The similarity of the sequences implies that they evolved by gene duplication. Residues that are conserved across all sequences are highlighted in grey. Below the protein sequences is a key denoting:[4]

Historically, the similarity of different amino acid sequences has been the most common method of inferring homology.[5] Sequence similarity is considered a good predictor of relatedness, since similar sequences are more likely the result of gene duplication and divergent evolution, rather than the result of convergent evolution. Amino acid sequence is typically more conserved than DNA sequence (due to the degenerate genetic code), so it is a more sensitive detection method. Since some of the amino acids have similar properties (e.g., charge, hydrophobicity, size), conservative mutations that interchange them are often neutral to function. The most conserved sequence regions of a protein often correspond to functionally important regions like catalytic sites and binding sites, since these regions are less tolerant to sequence changes.

Using sequence similarity to infer homology has several limitations. There is no minimum level of sequence similarity guaranteed to produce identical structures. Over long periods of evolution, related proteins may show no detectable sequence similarity to one another. Sequences with many insertions and deletions can also sometimes be difficult to align and so identify the homologous sequence regions. In the PA clan of proteases, for example, not a single residue is conserved through the superfamily, not even those in the catalytic triad. Conversely, the individual families that make up a superfamily are defined on the basis of their sequence alignment, for example the C04 protease family within the PA clan.

Nevertheless, sequence similarity is the most commonly used form of evidence to infer relatedness, since the number of known sequences vastly outnumbers the number of known tertiary structures.[6] In the absence of structural information, sequence similarity constrains the limits of which proteins can be assigned to a superfamily.[6]

Structural similarity

Structural homology in the PA superfamily (PA clan). The double β-barrel that characterises the superfamily is highlighted in red. Shown are representative structures from several families within the PA superfamily. Note that some proteins show partially modified structural. Chymotrypsin (1gg6), tobacco etch virus protease (1lvm), calicivirin (1wqs), west nile virus protease (1fp7), exfoliatin toxin (1exf), HtrA protease (1l1j), snake venom plasminogen activator (1bqy), chloroplast protease (4fln) and equine arteritis virus protease (1mbm).

Structure is much more evolutionarily conserved than sequence, such that proteins with highly similar structures can have entirely different sequences.[7] Over very long evolutionary timescales, very few residues show detectable amino acid sequence conservation, however secondary structural elements and tertiary structural motifs are highly conserved. Some protein dynamics[8] and conformational changes of the protein structure may also be conserved, as is seen in the serpin superfamily.[9] Consequently, protein tertiary structure can be used to detect homology between proteins even when no evidence of relatedness remains in their sequences. Structural alignment programs, such as DALI, use the 3D structure of a protein of interest to find proteins with similar folds.[10] However, on rare occasions, related proteins may evolve to be structurally dissimilar[11] and relatedness can only be inferred by other methods.[12][13][14]

Mechanistic similarity

The catalytic mechanism of enzymes within a superfamily is commonly conserved, although substrate specificity may be significantly different.[15] Catalytic residues also tend to occur in the same order in the protein sequence.[16] For the families within the PA clan of proteases, although there has been divergent evolution of the catalytic triad residues used to perform catalysis, all members use a similar mechanism to perform covalent, nucleophilic catalysis on proteins, peptides or amino acids.[17] However, mechanism alone is not sufficient to infer relatedness. Some catalytic mechanisms have been convergently evolved multiple times independently, and so form separate superfamilies,[18][19][20] and in some superfamilies display a range of different (though often chemically similar) mechanisms.[15][21]

Evolutionary significance

Protein superfamilies represent the current limits of our ability to identify common ancestry.[22] They are the largest evolutionary grouping based on direct evidence that is currently possible. They are therefore amongst the most ancient evolutionary events currently studied. Some superfamilies have members present in all kingdoms of life, indicating that the last common ancestor of that superfamily was in the last universal common ancestor of all life (LUCA).[23]

Superfamily members may be in different species, with the ancestral protein being the form of the protein that existed in the ancestral species (orthology). Conversely, the proteins may be in the same species, but evolved from a single protein whose gene was duplicated in the genome (paralogy).

Diversification

A majority of proteins contain multiple domains. Between 66-80% of eukaryotic proteins have multiple domains while about 40-60% of prokaryotic proteins have multiple domains.[5] Over time, many of the superfamilies of domains have mixed together. In fact, it is very rare to find “consistently isolated superfamilies”.[5] [1] When domains do combine, the N- to C-terminal domain order (the "domain architecture") is typically well conserved. Additionally, the number of domain combinations seen in nature is small compared to the number of possibilities, suggesting that selection acts on all combinations.[5]

Examples

α/β hydrolase superfamily
Members share an α/β sheet, containing 8 strands connected by helices, with catalytic triad residues in the same order,[24] activities include proteases, lipases, peroxidases, esterases, epoxide hydrolases and dehalogenases.[25]
Alkaline phosphatase superfamily
Members share an αβα sandwich structure[26] as well as performing common promiscuous reactions by a common mechanism.[27]
Globin superfamily
Members share an 8-alpha helix globular globin fold.[28][29]
Immunoglobulin superfamily
Members share a sandwich-like structure of two sheets of antiparallel β strands (Ig-fold), and are involved in recognition, binding, and adhesion.[30][31]
PA clan
Members share a chymotrypsin-like double β-barrel fold and similar proteolysis mechanisms but sequence identity of <10%. The clan contains both cysteine and serine proteases (different nucleophiles).[2][32]
Ras superfamily
Members share a common catalytic G domain of a 6-strand β sheet surrounded by 5 α-helices.[33]
RSH superfamily
Members share capability to hydrolyze and/or synthesize ppGpp alarmones in the stringent response. [34]
Serpin superfamily
Members share a high-energy, stressed fold which can undergo a large conformational change, which is typically used to inhibit serine and cysteine proteases by disrupting their structure.[9]
TIM barrel superfamily
Members share a large α8β8 barrel structure. It is one of the most common protein folds and the monophylicity of this superfamily is still contested.[35][36]

Protein superfamily resources

Several biological databases document protein superfamilies and protein folds, for example:

  • Pfam - Protein families database of alignments and HMMs
  • PROSITE - Database of protein domains, families and functional sites
  • PIRSF - SuperFamily Classification System
  • PASS2 - Protein Alignment as Structural Superfamilies v2
  • SUPERFAMILY - Library of HMMs representing superfamilies and database of (superfamily and family) annotations for all completely sequenced organisms
  • SCOP and CATH - Classifications of protein structures into superfamilies, families and domains

Similarly there are algorithms that search the PDB for proteins with structural homology to a target structure, for example:

  • DALI - Structural alignment based on a distance alignment matrix method

See also

References

  1. ^ a b Holm L, Rosenström P (July 2010). "Dali server: conservation mapping in 3D". Nucleic Acids Research. 38 (Web Server issue): W545–9. doi:10.1093/nar/gkq366. PMC 2896194. PMID 20457744.
  2. ^ a b c Rawlings ND, Barrett AJ, Bateman A (January 2012). "MEROPS: the database of proteolytic enzymes, their substrates and inhibitors". Nucleic Acids Research. 40 (Database issue): D343–50. doi:10.1093/nar/gkr987. PMC 3245014. PMID 22086950.
  3. ^ Henrissat B, Bairoch A (June 1996). "Updating the sequence-based classification of glycosyl hydrolases". The Biochemical Journal. 316 (Pt 2): 695–6. doi:10.1042/bj3160695. PMC 1217404. PMID 8687420.
  4. ^ "Clustal FAQ #Symbols". Clustal. Archived from the original on 24 October 2016. Retrieved 8 December 2014.
  5. ^ a b c d Han JH, Batey S, Nickson AA, Teichmann SA, Clarke J (April 2007). "The folding and evolution of multidomain proteins". Nature Reviews Molecular Cell Biology. 8 (4): 319–30. doi:10.1038/nrm2144. PMID 17356578. S2CID 13762291.
  6. ^ a b Pandit SB, Gosar D, Abhiman S, Sujatha S, Dixit SS, Mhatre NS, Sowdhamini R, Srinivasan N (January 2002). "SUPFAM--a database of potential protein superfamily relationships derived by comparing sequence-based and structure-based families: implications for structural genomics and function annotation in genomes". Nucleic Acids Research. 30 (1): 289–93. doi:10.1093/nar/30.1.289. PMC 99061. PMID 11752317.
  7. ^ Orengo CA, Thornton JM (2005). "Protein families and their evolution-a structural perspective". Annual Review of Biochemistry. 74 (1): 867–900. doi:10.1146/annurev.biochem.74.082803.133029. PMID 15954844.
  8. ^ Liu Y, Bahar I (September 2012). "Sequence evolution correlates with structural dynamics". Molecular Biology and Evolution. 29 (9): 2253–63. doi:10.1093/molbev/mss097. PMC 3424413. PMID 22427707.
  9. ^ a b Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PG, Irving JA, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O'Donnell E, Salvesen GS, Travis J, Whisstock JC (September 2001). "The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature". The Journal of Biological Chemistry. 276 (36): 33293–6. doi:10.1074/jbc.R100016200. PMID 11435447.
  10. ^ Holm L, Laakso LM (July 2016). "Dali server update". Nucleic Acids Research. 44 (W1): W351–5. doi:10.1093/nar/gkw357. PMC 4987910. PMID 27131377.
  11. ^ Pascual-García A, Abia D, Ortiz ÁR, Bastolla U (2009). "Cross-Over between Discrete and Continuous Protein Structure Space: Insights into Automatic Classification and Networks of Protein Structures". PLOS Computational Biology. 5 (3): e1000331. Bibcode:2009PLSCB...5E0331P. doi:10.1371/journal.pcbi.1000331. PMC 2654728. PMID 19325884.
  12. ^ Li D, Zhang L, Yin H, Xu H, Satkoski Trask J, Smith DG, Li Y, Yang M, Zhu Q (June 2014). "Evolution of primate α and θ defensins revealed by analysis of genomes". Molecular Biology Reports. 41 (6): 3859–66. doi:10.1007/s11033-014-3253-z. PMID 24557891. S2CID 14936647.
  13. ^ Krishna SS, Grishin NV (April 2005). "Structural drift: a possible path to protein fold change". Bioinformatics. 21 (8): 1308–10. doi:10.1093/bioinformatics/bti227. PMID 15604105.
  14. ^ Bryan PN, Orban J (August 2010). "Proteins that switch folds". Current Opinion in Structural Biology. 20 (4): 482–8. doi:10.1016/j.sbi.2010.06.002. PMC 2928869. PMID 20591649.
  15. ^ a b Dessailly, Benoit H.; Dawson, Natalie L.; Das, Sayoni; Orengo, Christine A. (2017), "Function Diversity within Folds and Superfamilies", From Protein Structure to Function with Bioinformatics, Springer Netherlands, pp. 295–325, doi:10.1007/978-94-024-1069-3_9, ISBN 9789402410679
  16. ^ Echave J, Spielman SJ, Wilke CO (February 2016). "Causes of evolutionary rate variation among protein sites". Nature Reviews. Genetics. 17 (2): 109–21. doi:10.1038/nrg.2015.18. PMC 4724262. PMID 26781812.
  17. ^ Shafee T, Gatti-Lafranconi P, Minter R, Hollfelder F (September 2015). "Handicap-Recover Evolution Leads to a Chemically Versatile, Nucleophile-Permissive Protease". ChemBioChem. 16 (13): 1866–1869. doi:10.1002/cbic.201500295. PMC 4576821. PMID 26097079.
  18. ^ Buller AR, Townsend CA (February 2013). "Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad". Proceedings of the National Academy of Sciences of the United States of America. 110 (8): E653–61. Bibcode:2013PNAS..110E.653B. doi:10.1073/pnas.1221050110. PMC 3581919. PMID 23382230.
  19. ^ Coutinho PM, Deleury E, Davies GJ, Henrissat B (April 2003). "An evolving hierarchical family classification for glycosyltransferases". Journal of Molecular Biology. 328 (2): 307–17. doi:10.1016/S0022-2836(03)00307-3. PMID 12691742.
  20. ^ Zámocký M, Hofbauer S, Schaffner I, Gasselhuber B, Nicolussi A, Soudi M, Pirker KF, Furtmüller PG, Obinger C (May 2015). "Independent evolution of four heme peroxidase superfamilies". Archives of Biochemistry and Biophysics. 574: 108–19. doi:10.1016/j.abb.2014.12.025. PMC 4420034. PMID 25575902.
  21. ^ Akiva, Eyal; Brown, Shoshana; Almonacid, Daniel E.; Barber, Alan E.; Custer, Ashley F.; Hicks, Michael A.; Huang, Conrad C.; Lauck, Florian; Mashiyama, Susan T. (2013-11-23). "The Structure–Function Linkage Database". Nucleic Acids Research. 42 (D1): D521 – D530. doi:10.1093/nar/gkt1130. ISSN 0305-1048. PMC 3965090. PMID 24271399.
  22. ^ Shakhnovich BE, Deeds E, Delisi C, Shakhnovich E (March 2005). "Protein structure and evolutionary history determine sequence space topology". Genome Research. 15 (3): 385–92. arXiv:q-bio/0404040. doi:10.1101/gr.3133605. PMC 551565. PMID 15741509.
  23. ^ Ranea JA, Sillero A, Thornton JM, Orengo CA (October 2006). "Protein superfamily evolution and the last universal common ancestor (LUCA)". Journal of Molecular Evolution. 63 (4): 513–25. Bibcode:2006JMolE..63..513R. doi:10.1007/s00239-005-0289-7. hdl:10261/78338. PMID 17021929. S2CID 25258028.
  24. ^ Carr PD, Ollis DL (2009). "Alpha/beta hydrolase fold: an update". Protein and Peptide Letters. 16 (10): 1137–48. doi:10.2174/092986609789071298. PMID 19508187.
  25. ^ Nardini M, Dijkstra BW (December 1999). "Alpha/beta hydrolase fold enzymes: the family keeps growing". Current Opinion in Structural Biology. 9 (6): 732–7. doi:10.1016/S0959-440X(99)00037-8. PMID 10607665.
  26. ^ "SCOP". Archived from the original on 29 July 2014. Retrieved 28 May 2014.
  27. ^ Mohamed MF, Hollfelder F (January 2013). "Efficient, crosswise catalytic promiscuity among enzymes that catalyze phosphoryl transfer". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1834 (1): 417–24. doi:10.1016/j.bbapap.2012.07.015. PMID 22885024.
  28. ^ Branden C, Tooze J (1999). Introduction to protein structure (2nd ed.). New York: Garland Pub. ISBN 978-0815323051.
  29. ^ Bolognesi M, Onesti S, Gatti G, Coda A, Ascenzi P, Brunori M (February 1989). "Aplysia limacina myoglobin. Crystallographic analysis at 1.6 A resolution". Journal of Molecular Biology. 205 (3): 529–44. doi:10.1016/0022-2836(89)90224-6. PMID 2926816.
  30. ^ Bork P, Holm L, Sander C (September 1994). "The immunoglobulin fold. Structural classification, sequence patterns and common core". Journal of Molecular Biology. 242 (4): 309–20. doi:10.1006/jmbi.1994.1582. PMID 7932691.
  31. ^ Brümmendorf T, Rathjen FG (1995). "Cell adhesion molecules 1: immunoglobulin superfamily". Protein Profile. 2 (9): 963–1108. PMID 8574878.
  32. ^ Bazan JF, Fletterick RJ (November 1988). "Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications". Proceedings of the National Academy of Sciences of the United States of America. 85 (21): 7872–6. Bibcode:1988PNAS...85.7872B. doi:10.1073/pnas.85.21.7872. PMC 282299. PMID 3186696.
  33. ^ Vetter IR, Wittinghofer A (November 2001). "The guanine nucleotide-binding switch in three dimensions". Science. 294 (5545): 1299–304. Bibcode:2001Sci...294.1299V. doi:10.1126/science.1062023. PMID 11701921. S2CID 6636339.
  34. ^ Atkinson, Gemma C.; Tenson, Tanel; Hauryliuk, Vasili (2011-08-09). "The RelA/SpoT Homolog (RSH) Superfamily: Distribution and Functional Evolution of ppGpp Synthetases and Hydrolases across the Tree of Life". PLOS ONE. 6 (8): e23479. Bibcode:2011PLoSO...623479A. doi:10.1371/journal.pone.0023479. ISSN 1932-6203. PMC 3153485. PMID 21858139.
  35. ^ Nagano N, Orengo CA, Thornton JM (August 2002). "One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions". Journal of Molecular Biology. 321 (5): 741–65. doi:10.1016/s0022-2836(02)00649-6. PMID 12206759.
  36. ^ Farber G (1993). "An α/β-barrel full of evolutionary trouble". Current Opinion in Structural Biology. 3 (3): 409–412. doi:10.1016/S0959-440X(05)80114-9.

Read other articles:

Kelima kota bangsa Filistin yang disebutkan dalam Alkitab: Gaza, Asdod, Askelon, Ekron, dan Gat Bagian dari seri mengenai Sejarah Israel Israel kuno dan Yudea Prasejarah Kanaan Bangsa Israel Monarki persatuan Kerajaan Utara Kerajaan Yudea Pemerintahan Babilonia Zaman Bait Allah Kedua (530 SM–70 M) Pemerintahan Persia Pemerintahan Helenistik Dinasti Hasmonean Kerajaan Herodian Tetrarki Yudea Romawi Abad Pertengahan (70–1517) Palaestina Romawi Palaestina Bizantium (Prima · Secunda) Penaklu...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (أبريل 2018) مديرية ساجارماثا الموقع الجغرافي سميت باسم جبل إفرست  تاريخ الإلغاء 20 سبتمب...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Khalilabad railway station – news · newspapers · books · scholar · JSTOR (February 2019) This art...

Lobus frontalRincianBagian dariOtak besarArteriSerebral anterior Serebral tengahPengidentifikasiBahasa Latinlobus frontalisMeSHD005625NeuroNames56NeuroLex IDbirnlex_928TA98A14.1.09.110TA25445FMA61824Daftar istilah neuroanatomi[sunting di Wikidata] Lobus frontal adalah lobus terbesar dari empat lobus utama otak pada mamalia, dan terletak di bagian depan setiap hemisfer otak (di depan lobus parietal dan lobus temporal). Lobus ini dipisahkan dari lobus parietal oleh sebuah alur di antara jar...

 

Filipi 1Vignette pada halaman sebelum permulaan (head-piece) Surat Filipi; dibuat oleh P J de Loutherbourg untuk Macklin Bible (lukisan 105 dari 134), pada Bowyer Bible New Testament, tahun 1800 M. Terbitan T. Macklin, London.KitabSurat FilipiKategoriSurat-surat PaulusBagian Alkitab KristenPerjanjian BaruUrutan dalamKitab Kristen11← Efesus 6 pasal 2 → Filipi 1 (disingkat Flp 1) adalah bagian pertama dari Surat Paulus kepada Jemaat di Filipi dalam Perjanjian Baru di Alkitab Kristen...

 

One make racing series This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Porsche Cup Brasil – news · newspapers · books · scholar · JSTOR (April 2022) (Learn how and when to remove this template message) Porsche Cup BrasilCategoryOne-make racing by PorscheCountryBrazilInaugural season2005ConstructorsPorscheTyr...

American baseball player (1866–1945) Baseball player Taylor ShaferSecond baseman / OutfielderBorn: (1866-07-13)July 13, 1866Philadelphia, PennsylvaniaDied: October 27, 1945(1945-10-27) (aged 79)Glendale, CaliforniaBatted: LeftThrew: UnknownMLB debutMay 5, 1884, for the Altoona Mountain CityLast MLB appearanceSeptember 16, 1890, for the Philadelphia AthleticsMLB statisticsBatting average.187Home runs0Runs batted in21 Teams Altoona Mountain City (1884) Kansa...

 

1918 American filmThirty a WeekDirected byHarry BeaumontWritten byJ. Clarkson MillerBased ona play Thirty A Week by Thompson BuchananProduced bySamuel GoldwynStarringTom MooreCinematographyGeorge WebberDistributed byGoldwyn PicturesRelease dateOctober 13, 1918Running time50 minutesCountryUSALanguageSilent...English titles Tom Moore and Tallulah Bankhead Thirty a Week is a lost[1] 1918 silent film drama directed by Harry Beaumont and starring Tom Moore and sixteen year old ingenue Tall...

 

American wrestler For the parachutist, see Adeline Gray (parachutist). Adeline Gray2021 World Wrestling ChampionshipsPersonal informationFull nameAdeline Maria GrayBorn (1991-01-15) January 15, 1991 (age 32)Denver, Colorado, U.S.[1]Alma materBear Creek High - Lakewood, COHeight5 ft 8 in (173 cm)[2]SpouseDamaris Sanders[3]SportSportWrestlingUniversity teamDeVry UniversityClubNew York Athletic Club[4]Coached byTerry Steiner, Nate Eng...

2024 election in Portland, Oregon, US2024 Portland mayoral election ← 2020 November 5, 2024 2028 →   Party Nonpartisan Nonpartisan Incumbent Mayor Ted Wheeler Democratic Elections in Oregon Federal government Presidential elections 1860 1864 1868 1872 1876 1880 1884 1888 1892 1896 1900 1904 1908 1912 1916 1920 1924 1928 1932 1936 1940 1944 1948 1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020 2024 Presidential primaries Democ...

 

This article is about a region or people referred to in the Bible and Quran. For other uses, see Midian (disambiguation). Jabal Hubaysh, Saudi Arabia redirects here. For the Yemeni mountain, see Jabal Hubaysh, Yemen. Geographical place mentioned in the Torah PlaceMidian Arabic: مَدْيَن, romanized: Madyan Greek: Μαδιάμ, translit. Madiam Hebrew: מִדְיָן, romanized: MīḏyānAbove: Shuaib Caves in Al-Bada'a, region of Tabuk in northwestern Saudi Arabia Below: ...

 

Колона німецьких військ в Чехословаччині Файл:Skupina německých studentů z Prahy jde pozdravit Vůdce.gifГрупа німецьких студентів на демонстрації в Празі Дана стаття розглядає аспекти участі держави Чехословаччина у Другій світовій війні з початку німецької окупації Чехословаччини в березн...

Ballot measure in Los Angeles County, California for transportation projects Measure R November 4, 2008 (2008-11-04) County of Los Angeles Sales TaxResults Choice Votes % Yes 2,039,214 67.93% No 962,569 32.07% Los Angeles County Official Results[1] Measure R was a ballot measure during the November 2008 elections in Los Angeles County, California, that proposed a half-cent sales taxes increase on each dollar of taxable sales (originating in or made from Los Angeles Coun...

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Theodore Boone: The Accused – news · newspapers · books · scholar · JSTOR (March 2012) Theodore Boone: The Accused First edition (US)AuthorJohn GrishamCountryUnited StatesLanguageEnglishGenreLegal thriller, Young adult fictionPublisherDutton Books for...

 

2014 film American HeistCanadian theatrical release posterDirected bySarik AndreasyanWritten byRaul InglisBased onThe Great St. Louis Bank Robberyby Charles GuggenheimProduced by Tove Christensen Georgy Malkov Sarik Andreasyan Gevond Andreasyn Vladimir Poliakov Starring Hayden Christensen Adrien Brody Jordana Brewster Tory Kittles Akon CinematographyAntonio CalvacheEdited by Kirill Kozlov Kiran Pallegadda Music by Roman Vishnevsky Alim Zairov Akon (original music tracks) Productioncompanies G...

Pour les articles homonymes, voir Montaigne (homonymie). Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (février 2020). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références » E...

 

Perawatan kulit adalah rangkaian dari berbagai penerapan yang mendukung keadaan integritas kulit, untuk meningkatkan sebuah penampilan dan mengubah kondisi kulit. Mereka dapat mengandung nutrisi, menghindari dari paparan sinar matahari yang berlebihan dan penggunaan produk kulit emolien yang tepat. Kegiatan yang dapat meningkatkan penampilan termasuk dalam penggunaan kosmetik, botulinum, pengelupasan kulit, pengisi, pelapisan ulang laser, mikrodermabrasi, pengelupasan kulit, terapi retinol da...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Harmonic Generator – news · newspapers · books · scholar · JSTOR (December 2012) (Learn how and when to remove this template message) 2002 EP by The DatsunsHarmonic GeneratorEP by The DatsunsReleased2002GenreRockProducerThe DatsunsThe Datsuns chronology The Datsuns(2002)...

Chinese television series Untouchable LoversDrama posterAlso known asThe Phoenix PrisonGenreHistorical fictionRomanceBased onFeng Qiu Huang by Tianyi YoufengWritten byYu ZhengDirected byLi HuizhuDeng WeienHuang BinStarringGuan XiaotongSong WeilongCountry of originChinaOriginal languageMandarinNo. of seasons1No. of episodes52ProductionProducerYu ZhengProduction locationsHengdian World StudiosIcelandRunning time45 minsProduction companiesCathay MediaHuanyu FilmOriginal releaseNetworkHunan TVRel...

 

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 27 de julio de 2009. FORMOSA/AEROCLUB - HUGO DEL ROSSO IATA: n/a OACI: n/a FAA: FOR LocalizaciónUbicación ArgentinaElevación 62Sirve a 15 km SW Formosa (ciudad)Detalles del aeropuertoTipo Aeródromo PúblicoOperador Aeroclub de FormosaPistas DirecciónLargoSuperficie19 - 011100tierra[editar datos en Wikidata] El Aeroclub Formosa es una entidad civil sin fines de lu...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!