Algebraic element

In mathematics, if A is an associative algebra over K, then an element a of A is called an algebraic element over K, or just algebraic over K, if there exists some non-zero polynomial with coefficients in K such that g(a) = 0.[1] Elements of A that are not algebraic over K are called transcendental over K. A special case of an associative algebra over is an extension field of .

These notions generalize the algebraic numbers and the transcendental numbers (where the field extension is C/Q, with C being the field of complex numbers and Q being the field of rational numbers).

Examples

  • The square root of 2 is algebraic over Q, since it is the root of the polynomial g(x) = x2 − 2 whose coefficients are rational.
  • Pi is transcendental over Q but algebraic over the field of real numbers R: it is the root of g(x) = x − π, whose coefficients (1 and −π) are both real, but not of any polynomial with only rational coefficients. (The definition of the term transcendental number uses C/Q, not C/R.)

Properties

The following conditions are equivalent for an element of an extension field of :

  • is algebraic over ,
  • the field extension is algebraic, i.e. every element of is algebraic over (here denotes the smallest subfield of containing and ),
  • the field extension has finite degree, i.e. the dimension of as a -vector space is finite,
  • , where is the set of all elements of that can be written in the form with a polynomial whose coefficients lie in .

To make this more explicit, consider the polynomial evaluation . This is a homomorphism and its kernel is . If is algebraic, this ideal contains non-zero polynomials, but as is a euclidean domain, it contains a unique polynomial with minimal degree and leading coefficient , which then also generates the ideal and must be irreducible. The polynomial is called the minimal polynomial of and it encodes many important properties of . Hence the ring isomorphism obtained by the homomorphism theorem is an isomorphism of fields, where we can then observe that . Otherwise, is injective and hence we obtain a field isomorphism , where is the field of fractions of , i.e. the field of rational functions on , by the universal property of the field of fractions. We can conclude that in any case, we find an isomorphism or . Investigating this construction yields the desired results.

This characterization can be used to show that the sum, difference, product and quotient of algebraic elements over are again algebraic over . For if and are both algebraic, then is finite. As it contains the aforementioned combinations of and , adjoining one of them to also yields a finite extension, and therefore these elements are algebraic as well. Thus set of all elements of that are algebraic over is a field that sits in between and .

Fields that do not allow any algebraic elements over them (except their own elements) are called algebraically closed. The field of complex numbers is an example. If is algebraically closed, then the field of algebraic elements of over is algebraically closed, which can again be directly shown using the characterisation of simple algebraic extensions above. An example for this is the field of algebraic numbers.

See also

References

  1. ^ Roman, Steven (2008). "18". Advanced Linear Algebra. Graduate Texts in Mathematics. New York, NY: Springer New York Springer e-books. pp. 458–459. ISBN 978-0-387-72831-5.

Read other articles:

Bedouin Negevبدو النقبהבדואים בנגבMasyarakat Bedouin di sebuah haflaJumlah populasiLebih dari 200.000Daerah dengan populasi signifikan Israel200.000-210.000[1][2][3]BahasaArab (terutama dialek Bedouin, juga Mesir dan Palestina), Ibrani (Israel Modern)AgamaIslam Bagian dari seriIslam Rukun Iman Keesaan Allah Nabi dan Rasul Allah Kitab-kitab Allah Malaikat Hari Kiamat Qada dan Qadar Rukun Islam Syahadat Salat Zakat Puasa Haji Sumber hukum Islam al...

 

出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。記事の信頼性向上にご協力をお願いいたします。(2012年8月) あさかぜ EF66牽引 「あさかぜ」2003年2月22日、横浜駅にて概要国 日本種類 寝台特別急行列車現況 廃止地域 東京都・神奈川県・静岡県・愛知県・岐阜県・滋賀県・京都府・大阪府・兵庫県・岡山県・広島県・山口...

 

الصليب الأحمر الأمريكي الصليب الأحمر الأمريكي‌ البلد الولايات المتحدة  المقر الرئيسي واشنطن، الولايات المتحدة تاريخ التأسيس 21 مايو 1881 مكان التأسيس واشنطن  المؤسس كلارا بارتون[1]  النوع وكالة الإغاثة الوضع القانوني منظمة 501(c)(3)[2]  الاهتمامات المساعدة ال...

この存命人物の記事には検証可能な出典が不足しています。信頼できる情報源の提供に協力をお願いします。存命人物に関する出典の無い、もしくは不完全な情報に基づいた論争の材料、特に潜在的に中傷・誹謗・名誉毀損あるいは有害となるものはすぐに除去する必要があります。出典検索?: カール16世グスタフ スウェーデン王 – ニュース · 書籍&...

 

City in Texas, United StatesMorgan's Point Resort, TexasCityLocation of MorgansPointResort, TexasCoordinates: 31°9′24″N 97°27′16″W / 31.15667°N 97.45444°W / 31.15667; -97.45444CountryUnited StatesStateTexasCountyBellArea[1] • Total2.86 sq mi (7.41 km2) • Land2.85 sq mi (7.38 km2) • Water0.01 sq mi (0.03 km2)Elevation686 ft (209 m)Population (2020) ...

 

دار الشيوخ   خريطة البلدية الإحداثيات 34°54′00″N 3°29′00″E / 34.9°N 3.48333333°E / 34.9; 3.48333333  تقسيم إداري  البلد  الجزائر  ولاية ولاية الجلفة  دائرة دائرة دار الشيوخ خصائص جغرافية  المجموع 338٫70 كم2 (130٫77 ميل2) ارتفاع 1100 متر  عدد السكان (2008[1])  المج

In Hengelo zijn meerdere watertorens gebouwd. Oude watertoren (Hengelo) gebouwd in 1896 Watertoren (Hengelo Stork, 1902) gebouwd in 1902 Watertoren (Hengelo Stork, 1917) gebouwd in 1917 Bekijk alle artikelen waarvan de titel begint met Watertoren (Hengelo) of met Watertoren (Hengelo) in de titel. Dit is een doorverwijspagina, bedoeld om de verschillen in betekenis of gebruik van Watertoren (Hengelo) inzichtelijk te maken. Op deze pagina staat een uitleg van de verschi...

 

Christian hymn written by Charles Wesley Come, Thou Long Expected JesusChristian hymnOccasionAdventTextCharles WesleyMeter8.7.8.7Melody Stuttgart attributed to Christian Witt Cross of Jesus by John Stainer Hyfrydol by Rowland Prichard Published1744 (1744) Come, Thou Long Expected Jesus is a 1744 Advent and Christmas carol common in Protestant hymnals. The text was written by Charles Wesley. It is performed to one of several tunes, including Stuttgart (attr. to Christian Friedrich Witt),&...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Foodpanda – berita · surat kabar · buku · cendekiawan · JSTOR Foodpanda adalah layanan pesan-antar makanan melalui situs atau aplikasi . Beda dengan layanan pesan-antar lainnya, pelanggan FoodPanda tidak...

Hungarian actor This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Gábor Reviczky – news · newspapers · books · scholar · JSTOR (June 2011) (Learn how and when to remove this template message) Gá...

 

Light rail station in Escondido, California, United States This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Nordahl Road station – news · newspapers · books · scholar · JSTOR (November 2023) Nordahl RoadNordahl Road station in 2022, looking westboundGeneral informationLocation2121 Barham DriveEscond...

 

United States historic placeCazenovia Park–South Park SystemU.S. National Register of Historic Places Buffalo and Erie County Botanical Gardens, located within South ParkShow map of New YorkShow map of the United StatesLocationSouth Park, NW along McKinley Pkwy. to Cazenovia Park, NW along McKinley Pkwy. to Heacock Park, Buffalo, New YorkCoordinates42°50′22″N 78°49′16″W / 42.83944°N 78.82111°W / 42.83944; -78.82111Area366.1 acres (148.2 ha)ArchitectF...

Music magazine DecibelDecember 2006 issue with ConvergeEditor-in-chiefAlbert MudrianCategoriesMusicFrequencyMonthlyPublisherAlex MulcahyFirst issueOctober 2004 (2004-10)CompanyRed Flag Media Inc.CountryUnited StatesBased inPhiladelphia, PennsylvaniaLanguageEnglishWebsitedecibelmagazine.comISSN1557-2137 Decibel is a monthly heavy metal magazine published by the Philadelphia-based Red Flag Media since October 2004.[1] Its sections include Upfront, Features, Reviews, Guest Colu...

 

The Tholos of Delphi in August 2007 The Tholos of Delphi is among the ancient structures of the Sanctuary of Athena Pronaia in Delphi. The circular temple, a tholos, shares the immediate site with other ancient foundations of the Temple of Athena Pronaia, all located less than a mile east of the main ruins at Delphi, in the modern Greek regional unit of Phocis. The tholos is part of the Delphi UNESCO World Heritage Site. The three reconstructed Doric columns of the tholos Architecture The arc...

 

Species of flowering plant Artemisia frigida Conservation status Secure (NatureServe) Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Asterids Order: Asterales Family: Asteraceae Genus: Artemisia Species: A. frigida Binomial name Artemisia frigidaWilld. Artemisia frigida is a widespread species of flowering plant in the aster family, which is known as the sunflower family. It is native to Europe, Asia, and much of North Ameri...

2015 mass shooter attack at African-American church in Charleston, South Carolina 2015 Charleston shooting redirects here. For the fatal shooting by a North Charleston police officer, see Killing of Walter Scott. Charleston church shootingPart of mass shootings in the United States, domestic terrorism in the United States and racism against African AmericansPeople mourning the deaths at the Emanuel African Methodist Episcopal Church; image taken June 20 (three days post-shooting)CharlestonCha...

 

Norgesmesterskapet 2018 Competizione Norgesmesterskapet Sport Calcio Edizione 113ª Organizzatore NFF Date 3 marzo 20182 novembre 2018 Luogo  Norvegia Sito web Fotball.no - NM 2018 Risultati Vincitore Rosenborg(12º titolo) Secondo Strømsgodset Statistiche Incontri disputati 128 Gol segnati 419 (3,27 per incontro) Ullevaal Stadion di Oslo, sede della finale. Cronologia della competizione 2017 2019 Manuale Il Norgesmesterskapet 2018 di calcio è stata la 113ª edizione del torneo. L...

 

Untuk jenderal, lihat Diophantus (jenderal). Laman judul edisi 1621 Aritmatika karya Diophantus, diterjemahkan ke dalam bahasa Latin oleh Claude Gaspard Bachet de Méziriac. Diophantus dari Alexandria (bahasa Yunani Kuno: Διόφαντος ὁ Ἀλεξανδρεύς; diyakini lahir antara 201 dan 215 M; wafat pada usia 84 tahun, diyakini antara 285 dan 299 M) adalah seorang matematikawan Helenistik Aleksandria. Ia adalah seorang penulis seri buku berjudul Arithmetica, beberapa diantaran...

Part of a series on the History of Malaysia Prehistoric Malaysia Prehistoric Malaysia Early kingdoms Gangga Negara 2nd–11th century Langkasuka 2nd–14th century Chi Tu 2nd–6th century Pan Pan 3rd–5th century Kedah Tua 5th–9th century Pahang Tua 5th–15th century Melayu 7th–14th century Srivijaya 650–1275 Majapahit 1293–1500 Rise of Muslim states Kedah Sultanate 1136–present Samudera Pasai Sultanate 1267–1521 Brunei Sultanate 1368–present Malacca Sultanate 1402–1511 Sul...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. SDS Kartika VIII-2Sekolah Dasar Swasta Kartika VIII-2InformasiJenisNegeriNomor Pokok Sekolah Nasional20110020Jumlah siswa162 2010StatusAktifAlamatLokasiJl.Rantai Mas -Komplek Bulak Rantai, Jakarta Timur, DKI Jakarta, IndonesiaSitus webLaman ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!