Wüstit kristallisiert im kubischen Kristallsystem und entwickelt überwiegend Krusten, interkristalline Füllungen und massige Aggregate, die einen metallischen Glanz aufweisen. Er ist in jeder Form undurchsichtig und zeigt im Tageslicht eine braune und schwarze Farbe. Im Auflicht erscheint er dagegen grau.
Erstmals wissenschaftlich beschrieben wurde das Mineral 1927 von Rudolf Schenck und Th. Dingmann. Als Typlokalität gilt Scharnhausen in Baden-Württemberg.
Im zuletzt 2018 überarbeiteten und aktualisierten Lapis-Mineralienverzeichnis nach Stefan Weiß, das sich aus Rücksicht auf private Sammler und institutionelle Sammlungen noch nach dieser klassischen Systematik von Karl Hugo Strunz richtet, erhielt das Mineral die System- und Mineral-Nr. IV/A.04-020. In der „Lapis-Systematik“ entspricht dies der ebenfalls der Abteilung „Oxide mit dem Stoffmengenverhältnis Metall : Sauerstoff = 1 : 1 und 2 : 1 (M2O, MO)“, wo Wüstit zusammen mit Bunsenit, Calciumoxid, Manganosit, Monteponit, Murdochit, Palladinit und Periklas die „Periklasgruppe“ bildet.[2]
Die vorwiegend im englischen Sprachraum gebräuchliche Systematik der Minerale nach Dana ordnet den Wüstit ebenfalls in die Klasse der „Oxide und Hydroxide“ und dort in die Abteilung der „Oxide“ ein. Hier ist er zusammen mit Periklas, Bunsenit, Manganosit, Monteponit, Calciumoxid und Hongquiit in der „Periklasgruppe (Isometrisch, Fm3m)“ mit der Systemnummer 04.02.01 innerhalb der Unterabteilung „Einfache Oxide mit einer Kationenladung von 2+(AO)“ zu finden.
Anders als sein außerordentlich stabiles Mg-haltiges Analog Periklas (MgO) durchläuft Wüstit schon bei Drücken, wie sie im Erdmantel auftreten, Phasentransformationen. Ab etwa 17 GPa und Temperaturen von etwa 300 K erfolgt der Übergang von der NaCl-Struktur (B1) zu einem rhomboedrischen Kristallgitter. Bei Temperaturen von etwa 600 K und mehr als 90 GPa findet der Übergang in eine NiAs-Struktur (B8) statt. Das Druckintervall, in dem die rhomboedrische Form stabil ist, ist umso breiter, je tiefer die Temperatur ist.[7]
Modifikationen und Varietäten
Magnesiowüstit, (Fe,Mg)O, ist eine magnesiumhaltige Varietät des Wüstits.
Bildung und Fundorte
Magnesiowüstit ist eine von zwei Hauptkomponenten des unteren Erdmantels, bildet sich an der Erdoberfläche jedoch vorwiegend als Umwandlungsprodukt von anderen eisenhaltigen Mineralien bei hohen Temperaturen in einer stark reduzierenden Umgebung wie in stark reduzierten eisenhaltigen Basalten. Er findet sich in Form von Einschlüssen in Diamanten, als Abscheidungsprodukt von Tiefseequellen (Schwarze Raucher) sowie als Fe-Mn-Mikrosphärolite in verschiedenen geologischen Umgebungen und in einigen Meteoriten. Als Begleitminerale treten unter anderem Akaganeit, gediegenes Eisen, Goethit, Hämatit, Ilmenit, Lepidokrokit, Magnetit, Maghemit, Pyrit, Pyrrhotit und Troilit auf.
In der Erdkruste ist Wüstit eine seltene natürliche Mineralbildung und konnte nur an wenigen Orten nachgewiesen werden, wobei bisher (Stand: 2019) rund 80 Fundorte dokumentiert sind.[8] Neben seiner Typlokalität Scharnhausen fand sich das Mineral in Deutschland noch im Alluvialboden des Frohnbachs bei Oberwolfach in Baden-Württemberg, in den Schlacken des Eisenhüttenkombinats Ost (EKO) bei Eisenhüttenstadt in Brandenburg, im ehemaligen Steinbruch Bühl bei Weimar nahe Kassel in Hessen, im Hölltal nahe Lautenthal in Niedersachsen, in der Zinkhütte Genna in Iserlohn-Letmathe in Nordrhein-Westfalen und am Kammberg bei Joldelund in Schleswig-Holstein.
Weitere Fundorte liegen unter anderem in Australien, Aserbaidschan, China, Frankreich, Namibia, im Oman, in Polen, Rumänien, Russland, Südafrika, Tschechien, den Vereinigten Staaten von Amerika (USA) sowie außerhalb der Erde im Mondgestein.[9]
Verwendung
Wüstit ist ein wichtiges Zwischenglied bei der Reduktion von Eisenerzen und entsteht vor allem während des Verhüttungsprozesses im Hochofen aus dem zuvor gebildeten Magnetit. Die Gleichgewichtsreaktion zwischen Wüstit und Magnetit stellt sich wie folgt dar:
Des Weiteren ist er auch als Verwitterungsprodukt von Eisen-Hütten-Schlacke oder bei der Heißverarbeitung bzw. Wärmebehandlung von Eisenmetallen (Walzzunder) bekannt.[10]
K. C. Chandy: Short communications: An occurrence of wüstite. In: Mineralogical Magazine. Band35, 1965, S.664–666 (englisch, rruff.info [PDF; 121kB; abgerufen am 11. November 2019]).
Martin Okrusch, Siegfried Matthes: Mineralogie. Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde. 7., vollständig überarbeitete und aktualisierte Auflage. Springer, Berlin [u. a.] 2005, ISBN 3-540-23812-3, S.371ff.
↑ ab
Stefan Weiß: Das große Lapis Mineralienverzeichnis. Alle Mineralien von A – Z und ihre Eigenschaften. Stand 03/2018. 7., vollkommen neu bearbeitete und ergänzte Auflage. Weise, München 2018, ISBN 978-3-921656-83-9.
↑ abcHugo Strunz, Ernest H. Nickel: Strunz Mineralogical Tables. Chemical-structural Mineral Classification System. 9. Auflage. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart 2001, ISBN 3-510-65188-X, S.184 (englisch).
↑
Wüstite. In: John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, Monte C. Nichols (Hrsg.): Handbook of Mineralogy, Mineralogical Society of America. 2001 (englisch, handbookofmineralogy.org [PDF; 71kB; abgerufen am 11. November 2019]).
↑
Rudolf Schenck, Th. Dingmann: Gleichgewichtsuntersuchungen über die Reduktions-, Oxydations- und Kohlungsvorgänge beim Eisen III. In: Zeitschrift für anorganische und allgemeine Chemie. Band166, 1927, S.141, doi:10.1002/zaac.19271660111 (rruff.info [PDF; 2,3MB; abgerufen am 11. November 2019]).
↑
Ho-kwang Mao, Jinfu Shu, Yingwei Fei, Jingzhu Hu, Russell J. Hemley: The wüstite enigma. In: Physics of the Earth and Planetary Interiors. Band96, Nr.2–3, 1996, S.135–145, doi:10.1016/0031-9201(96)03146-9 (englisch, researchgate.net [abgerufen am 11. November 2019]).
↑Localities for Wüstite. In: mindat.org. Hudson Institute of Mineralogy, abgerufen am 11. November 2019 (englisch).
↑
Fundortliste für Wüstit beim Mineralienatlas (deutsch) und bei Mindat (englisch), abgerufen am 25. November 2023.