Read other articles:
«ماري شيلي» تُحوِّل إلى هنا. لإذا كُنت تَبحث عن أُمها، طالع ماري وولستونكرافت. ماري شيلي (بالإنجليزية: Mary Shelley) معلومات شخصية اسم الولادة ماري شيلي الميلاد 30 اغسطس 1797 الوفاة 1 فبراير 1851 سبب الوفاة ورم المخ الإقامة لندن الجنسية إنجلترا الزوج بيرسي بيش شيلي الأب و
Invasi Amerika Serikat ke Panama pada tahun 1989 yang dikenal dengan nama Operation Just Cause dilatarbelakangi oleh upaya Amerika Serikat (AS) untuk memerangi peredaran narkotika di negerinya sendiri khususnya dari Panama[1] Invasi Amerika Serikat ke PanamaBagian dari Perang DinginKendaraan Lapis Baja M113 milik Pasukan AS yang sedang berjaga di markas Pasukan Panama Yang telah di kuasaiTanggal20 Desember 1989 – 31 Januari 1990(1 Bulan 1 Minggu 4 Hari)LokasiPanamaHasil Kemenangan T...
Halaman ini berisi artikel tentang Filmnya. Untuk novel aslinya, lihat The Trench (novel). Meg 2: The TrenchPoster rilis teaterSutradara Ben Wheatley Produser Lorenzo di Bonaventura Belle Avery Ditulis oleh Jon Hoeber Erich Hoeber Dean Georgaris Skenario Jon Hoeber Erich Hoeber Dean Georgaris Cerita Dean Georgaris Jon Hoeber Erich Hoeber BerdasarkanThe Trencholeh Steve AltenPemeran Jason Statham Wu Jing Sophia Cai Page Kennedy Sergio Peris-Mencheta Skyler Samuels Cliff Curtis Penata mus...
Gewerbehaus mit Ansgar-Säulelinks: Venusgiebel, rechts: Merkurgiebel Das Gewerbehaus in Bremen - Mitte am Ansgarikirchhof, Ansgaritorstraße 24, ist ein repräsentatives Bauwerk aus dem frühen 17. Jahrhundert und Sitz der ältesten deutschen Handwerkskammer, der 1849 gegründeten Handwerkskammer Bremen. Nach starker Kriegszerstörung wurde das Gewerbehaus in der Nachkriegszeit wiederaufgebaut. Das Gebäude steht seit 1973 unter Denkmalschutz.[1] Inhaltsverzeichnis 1 Geschichte 1.1 W...
Główny artykuł: Mistrzostwa Europy w Lekkoatletyce 1950. Mistrzostwa Europy w Lekkoatletyce 1950Rzut oszczepem mężczyzn Toivo Hyytiäinen Per-Arne Berglund Ragnar Ericzon Per-Arne Berglund (z lewej) i Toivo Hyytiäinen Ragnar Ericzon Rzut oszczepem mężczyzn był jedną z konkurencji rozgrywanych podczas IV Mistrzostw Europy w Brukseli. Kwalifikacje zostały rozegrane 26 sierpnia, a finał 27 sierpnia 1950. Zwycięzcą został Fin Toivo Hyytiäinen. W rywalizacji wzięło udział ...
No. 288 Squadron RAFActive18 November 1941 – 15 June 194616 March 1953 – 30 September 1957Country United KingdomBranch Royal Air ForceMotto(s)Honour through deedsInsigniaSquadron BadgeA running stagSquadron CodeRP (November 1941 –June 1946)Military unit No. 288 Squadron RAF was a Royal Air Force Squadron formed as an anti-aircraft co-operation unit in World War II. History Formation in World War II The squadron formed at RAF Digby on 17 November 1941 and was equipped with Lysanders, Ble...
Political family of Pakistan Jinnah familyMazar-e-Quaid, the final resting place of Muhammad Ali Jinnah and Fatima JinnahPlace of originKathiawar, Bombay Presidency, British India[1] (now in Kathiawar, Gujarat India)MembersMuhammad Ali Jinnah Fatima Jinnah Emibai Jinnah Rattanbai Jinnah Dina WadiaConnected familiesWadia familyPetit familyDistinctionsPolitical prominenceEstate(s)See full list The Jinnah family (Urdu: خاندان جناح; Gujarati: ઝીણા કુટુંબ, ج...
Annual music festival in Boise, Idaho, United States This section has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. Please discuss further on the talk page. (September 2018) (Learn how and when to remove this temp...
Hàm gamma dọc theo một phần của trục số thực Trong toán học, hàm gamma (đại diện bằng Γ - chữ viết hoa gamma trong bảng chữ cái Hy Lạp) là một trong những phần mở rộng của các hàm số giai thừa với biến số của nó giảm xuống 1, cho các số thực và số phức. Được Daniel Bernoulli nêu ra, nếu n là một số nguyên dương, Γ ( n ) = ( n − 1 ) ! {\displaystyle \Gamma (n)=(n-1)!} Mặc dù các ph...
Japanese knife Japanese kaiken-style tantō. A kaiken (懐剣) is a 20–25 cm (7.9–9.8 in) long, single or (very rarely) double-edged Japanese knife[1] usually without ornamental fittings housed in a plain but lacquered mount. Uses The kaiken was once carried by men and women of the samurai class in Japan. It was useful for self-defense in indoor spaces where the long-bladed katana and intermediate-length wakizashi were inconvenient. Women carried them in their kimono eit...
Argentine politician Federico Storani (born 5 August 1950) is an Argentine politician, who served as Minister of the Interior during the presidency of Fernando de la Rúa between December 1999 and March 2001. A member of Radical Civic Union, he served several times as National Deputy representing the Buenos Aires Province.[1][2] He is the son of the renowned politician Conrado Storani. He grew up in Río Cuarto, Córdoba, where he made his elementary and high school. Then he m...
Para el resumen de todos los equipos Lotus, véase Lotus en Fórmula 1. Lotus Nombre completo Team LotusBase Hethel, Reino UnidoFundación 1952[1]Fundador/es Colin ChapmanDirector/es Frank Dernie (1994)Motores Borgward Climax BRM Maserati Ford-Cosworth Renault Honda Judd LamborghiniFórmula 1Debut Gran Premio de Mónaco de 1958Última carrera Gran Premio de Australia de 1994Carreras 491 (489)Podios 161Victorias 79Campeonatos de Constructores 7 (1963, 1965, 1968, 1970, 1972, 1973, 1978)...
Geographic region assigned to a military unit The examples and perspective in this article may not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (October 2011) (Learn how and when to remove this template message) Part of a series onWar History Prehistoric Ancient Post-classical Early modern napoleonic Late modern industrial fourth-gen Military Organization Command and control Defense minist...
Overview of the events of 2015 in paleobotany List of years in paleobotany … 2012 2013 2014 2015 2016 2017 2018 … In paleontology 2012 2013 2014 2015 2016 2017 2018 In arthropod paleontology 2012 2013 2014 2015 2016 2017 2018 In paleoentomology 2012 2013 2014 2015 2016 2017 2018 In paleomalacology 2012 2013 2014 2015 2016 2017 2018 In reptile paleontology 2012 2013 2014 2015 2016 2017 2018 In archosaur paleontology 2012 2013 2014 2015 2016 2017 2018 In mammal paleontology 2012 2013 2014 2...
Structure of the brain stem For the film, see Medulla Oblongata (film). For other uses, see Medulla (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Medulla oblongata – news · newspapers · books · scholar · JSTOR (October 2010) (Learn how and when to remove this template message) Medulla obl...
British writer (1935–2023) This article is about the Cornish novelist. For the American mathematician and nutritionist, see Diana Thomas (mathematician). D. M. ThomasBornDonald Michael Thomas(1935-01-25)25 January 1935Carnkie, Cornwall, EnglandDied26 March 2023(2023-03-26) (aged 88)Truro, Cornwall, EnglandOccupation Poet translator novelist editor biographer playwright Alma materNew College, OxfordPeriod1968–2023Notable worksThe Flute-PlayerDreaming in BronzeThe White HotelArara...
Karim El-Gawhary, 2012 in Frankfurt am Main Karim El-Gawhary (arabisch كريم الجوهري, DMG Karīm al-Ǧawharī; * 26. November 1963 in München) ist ein deutsch-ägyptischer Journalist.[1] Inhaltsverzeichnis 1 Leben 2 Privates 3 Bücher 4 Auszeichnungen 5 Weblinks 6 Einzelnachweise Leben Karim El-Gawhary wurde als Sohn eines Ägypters und einer Deutschen in München geboren und erlernte die arabische Sprache erst im Studium.[2] Er studierte Islamwissenschaft und P...
Rezerwat Kùrzé Grzãdë to je rezerwat ò wiéchrzëznie 170,7 ha. Tu rosce dosc wiele bùków, a téż jinëch drzéwiãt. Stądka nie je dalek do Bącza. Tu żił lasowi kùr, a miészi rezerwat cobë gò chrónic béł òd 1916 rokù. To je blós ùzémk artikla. Rôczimë do jegò rozwicégò.
Theorema de Pythagoras instantia de: theorema parte de: geometria euclidean[*] Commons: Pythagorean theorem Theorema de Pythagoras Le Theorema de Pythagoras es un theorema que explica como trovar le longitude de un del tres lateres de un triangulo que ha un angulo recte, quando on sape le longitude del altere duo lateres. Le formula de iste theorema es: a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} Iste theorema es attribuite a Pythagoras, in le scholas de geometria ma esseva probabileme...
American video game producer This article is about the American game developer. For the British actress, see Lucy Bradshaw. Lucy BradshawNationalityAmericanEducationUniversity of Michigan (B.A., Psychology)[1][2]OccupationVideo game producerKnown forThe SimsSimCity Lucy Bradshaw is an American video game producer. She is the former senior vice president and general manager of Maxis, a subsidiary of Electronic Arts.[3][4] Bradshaw worked at LucasArts and Ac...