Lidský genom je souhrn veškeré genetické informace zapsané v DNA uvnitř lidských buněk. Většina DNA se nachází uvnitř buněčného jádra a menší část v mitochondriích (tzv. mitochondriální DNA). V tělních buňkách se vyskytuje diploidní jaderný genom, což v praxi znamená, že každý gen je přítomen v buňce dvakrát (výjimkou jsou geny na pohlavních chromozomech u muže).
Historie výzkumu
DNA byla poprvé identifikována v roce 1869švýcarským lékařem Friedrichem Miescherem, a to v hnisu izolovaném z lékařských bandáží.[6] O její funkci se však dlouho nic nevědělo. Pravou roli DNA jako nositelky genetické informace se podařilo s jistotou určit až v 50. letech 20. století.[7] Ačkoliv se v oblasti genetiky začalo intenzívně bádat, správný počet lidských chromozomů (46) byl zjištěn až v roce 1955.[8] Byla potvrzena role DNA ve vzniku některých onemocnění, takto byl například na chromozomu 4 v roce 1983 objeven gen, jenž může při svém poškození vyvolat Huntingtonovu chorobu.[9] V roce 1987 vznikla první genetická mapa lidského genomu, jež dělila lidskou jadernou DNA na velké množství definovaných úseků (sekvencí).[10] V roce 1990 byl spuštěn Human Genome Project, kladoucí si za cíl přečíst (osekvenovat) celou jadernou DNA člověka; tento projekt byl úspěšně završen v podstatě již v roce 2003.[11] Nové geny se ale nacházely i po roce 2020.[12] Do současnosti však již bylo osekvenováno několik genomů různých lidí, včetně biochemika Jamese Watsona, ale i několika osob, jež si tuto nákladnou proceduru zaplatily.[13][14][15] Moderní metody sekvenace ovšem cenu dramaticky snížily a v současnosti je známa sekvence více než tisíce lidských genomů.[16] Zatímco dříve byl počet lidských genů odhadován na 100 000, v současné době jsou kvalifikované odhady pětkrát nižší.[17]
Jaderná DNA
Lidská jaderná DNA se skládá v haploidním stavu z asi 3,1–3,2 miliardy párů bází (tedy 3,2 Gbp).[1] Kdyby se seřadila jednotlivá vlákna za sebe, byla by vzniklá řada dlouhá asi jeden metr.[18]
Geny
Lidská jaderná DNA obsahuje 20–25 tisíc genů, což je mimochodem počet genů srovnatelný například s hlísticíCaenorhabditis elegans.[2][19] Některé prameny udávají pouhých 18 000 genů.[4][20] Počet nefunkčních genů (pseudogenů) představuje však dalších asi 20 000.[21] Mimo to jsou navíc v lidském genomu roztroušeny poněkud záhadné geny kódující různé druhy malých RNA – např. bylo odhaleno 800 genů pro microRNA.[1] Poměrně nízký počet genů je na druhou stranu efektivně využíván díky tzv. alternativnímu sestřihu (proces, v němž se z jednoho genu může vytvářet několik různých mRNA produktů) – alternativní sestřih se týká asi 35%∼60% genů.[1] Je dále zajímavé, že nejmenší lidský gen má pouze 500 nukleotidů a kóduje jistý histon, největší gen má 2,5 milionu nukleotidů a kóduje bílkovinu dystrofin (nicméně 99% tohoto obřího genu tvoří introny).[22] Lidský genom také ze značné části obsahuje endogenní retroviry.[23]
Chromozomy
Jaderný genom je rozeset po 23 párech chromozomů, z toho jeden pár je představován pohlavními chromozomyX a Y. Samotné geny kódující bílkoviny však tvoří pouhých 1,5% genomu, zbytek představují buď geny kódující různé druhy RNA, nebo různé regulační sekvence, introny a tzv. junk DNA („odpadní“ DNA) bez známé funkce.[24] DNA pocházející z virů např. představuje kolem 9% lidské DNA, virům podobné retrotranspozony činí až 34% z celkové sekvence.[17]
Lidský karyotyp (tedy chromozomální výbava) se dá rozdělit do sedmi skupin podle tvaru a velikosti chromozomů. Speciální pozornost je věnována poloze centromery, na tomto základě se rozlišují u člověka metacentrické, submetacentrické a akrocentrické chromozomy (telocentrické se u člověka nevyskytují; viz také článek chromozom):[2][25]
A: chromozomy 1, 2, 3 – velké, metacentrické či nanejvýš mírně submetacentrické chromozomy;
B: chromozomy 4,5 – velké submetacentrické chromozomy ;
C: chromozomy 6, 7, 8, 9, 10, 11, 12, X – středně velké submetacentrické chromozomy;
D: chromozomy 13, 14, 15 – středně velké akrocentrické chromozomy, 13 a 14 na jednom konci chromatidy mají satelity;
E: chromozomy 16, 17, 18 – krátké metacentrické či submetacentrické chromozomy;
F: chromozomy 19, 20 – krátké metacentrické chromozomy;
G: chromozomy 21, 22, Y – krátké akrocentrické chromozomy obsahující satelity (Y je však neobsahuje).
Mitochondriální DNA
Lidská mitochondriální DNA (mtDNA) má velikost 16 569 párů bází,[26] celkem obsahuje 37 genů, z toho 24 představují geny pro různou nekódující RNA (2 geny pro 16S a 23S rRNA a 22 genů pro tRNA). Zbývajících 13 genů kóduje vlastní mitochondriální polypeptidy podílející se na enzymatické výbavě mitochondrií.[27] Role mitochondriální DNA je pouze doplňková, ačkoliv i poškození některých mitochondriálních genů může způsobit vážná mitochondriální onemocnění.
Evoluce
Lidé (Homo) se od evoluční linie šimpanzů (Pan), svých nejbližších příbuzných, oddělili před 5 až 7 miliony lety.[28][29] Hlavní snadno viditelnou změnou je splynutí dvou chromozomů, čímž se počet chromozomů redukoval z 48 na 46, resp. v haploidním genomu z 24 na 23. Touto fúzí vznikl lidský chromozom 2.[30] Z genetického hlediska se však liší genom šimpanze a člověka jen velmi málo: udává se, že je genetická informace z 95–99% zcela identická.[29][31][32] Za některé rozdíly mezi genomem člověka a šimpanze jsou zodpovědné převážně genové duplikace a v menší míře i substituce v rámci jednoho nukleotidu (SNP). Proteiny kódované těmito geny se obvykle liší nanejvýš 1–2 aminokyselinami.[32] Přesto existují i výjimky – některé studie zveřejňují seznamy genů, které se na cestě mezi šimpanzem a člověkem zásadně změnily. Mezi ně patří například lidský gen FOXP2, který, pokud je u člověka zmutován, způsobuje vážné vady řeči. To by mohlo znamenat, že se tento gen účastnil vývoje mezilidské komunikace.[28][33] Do podobných souvislostí se dává i delece v genu MYH16, která způsobuje, že je u člověka jím kódovaný protein nefunkční, zatímco u ostatních primátů se tento protein možná podílí na vývoji kousacích svalů. Další pozměněné geny podle různých studií způsobují, že je člověk náchylnější či odolnější k různým nemocem.[29]
V posledních několika letech byla zveřejněna i část genomuneandertálce (Homo sapiens neanderthalensis), a proto je možno činit srovnání moderního člověka s jeho poměrně blízkým příbuzným. Genom neandertálce je totiž podobný genomu moderního člověka z 99,5%. K oddělení linie vedoucí k modernímu člověku od linie neandertálské došlo pravděpodobně před asi 500 000 lety. Výše zmíněný gen FOXP2 je u neandertálců stejný, jako u moderního člověka.[34] Zdá se také, že byli podobně jako cca polovina současných lidí v dospělosti neschopní trávit laktózu.[35]
Co se týká odlišnosti člověka od méně příbuzných druhů živočichů, i tam se dá najít značná podobnost. V lidském genomu bylo nalezeno několik stovek míst o délce více než 200 bp, které se na 100% shodují s genomem potkana a myši – tyto sekvence jsou zřejmě místa pro navázání speciálních transkripčních faktorů.[1]
Odkazy
Reference
↑ abcdeLITTLE, Peter F.R. Structure and function of the human genome. Genome Research. 2005-12, roč. 15, čís. 12, s. 1759–1766. Dostupné online. DOI10.1101/gr.4560905.
↑ abcROBERT C. KING; WILLIAM D. STANSFIELD; PAMELA K. MULLIGAN. A Dictionary of Genetics, Seventh Edition. [s.l.]: Oxford University Press, 2006.
↑International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome.. Nature. 2004, roč. 431, čís. 7011, s. 931–45. DOI10.1038/nature03001. PMID15496913.[1]
↑GC content -Human Homo sapiens [online]. Bionumbers. Dostupné online.
↑Dahm R. Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum. Genet.. January 2008, roč. 122, čís. 6, s. 565–81. DOI10.1007/s00439-007-0433-0. PMID17901982.
↑Hershey A, Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol. 1952, roč. 36, čís. 1, s. 39–56. Dostupné online [PDF]. DOI10.1085/jgp.36.1.39. PMID12981234.
↑Updated Dec.5,2008 08:25 KST. Digital Chosunilbo (English Edition) : Daily News in English About Korea [online]. English.chosun.com, 2008-12-05 [cit. 2009-05-31]. Dostupné v archivu pořízeném dne 2009-06-04.
↑Kbs World [online]. Rki.kbs.co.kr, 2008-12-11 [cit. 2009-05-31]. Dostupné v archivu pořízeném dne 2009-06-26.
↑MCVEAN, Gil A., 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012-10-31, roč. 491, čís. 7422, s. 56–65. DOI10.1038/nature11632.
↑ abRYAN, Frank. I, virus: Why you're only half human [online]. New Scientist, 29. leden 2010. Dostupné online.
↑PALEČEK, Jiří. Biologie buňky I. Základy mikroskopické cytologie. Praha: Karolinum, 1996.
↑ Archivovaná kopie. www.wormbase.org [online]. [cit. 2009-09-21]. Dostupné v archivu pořízeném z originálu dne 2013-11-28.
↑International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome.. Nature. 2001, roč. 409, čís. 6822, s. 860–921. DOI10.1038/35057062. PMID11237011.[2]
↑ Archivovaná kopie. homepages.uel.ac.uk [online]. [cit. 2009-09-21]. Dostupné v archivu pořízeném dne 2009-07-03.
↑ abDAWKINS, Richard. Příběh předka. [s.l.]: Academia, 2008.
↑ abcVARKI, Ajit, Tasha K Altheide. Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Research. 2005-12, roč. 15, čís. 12, s. 1746–1758. Dostupné online [cit. 2009-09-21]. ISSN1088-9051. DOI10.1101/gr.3737405.
↑De Grouchy J. Chromosome phylogenies of man, great apes, and Old World monkeys.. Genetica. Dostupné online. 1987 Aug 31;73(1-2):37-52.
↑ Archivovaná kopie. insciences.org [online]. [cit. 2009-09-21]. Dostupné v archivu pořízeném dne 2016-03-04.
↑ abChimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005, roč. 437, s. 69–87. Dostupné online [PDF]. DOI10.1038/nature04072.
↑FISHER, Simon E, Constance Scharff. FOXP2 as a molecular window into speech and language. Trends in Genetics: TIG. 2009-04, roč. 25, čís. 4, s. 166–177. Dostupné online [cit. 2009-09-21]. ISSN0168-9525. DOI10.1016/j.tig.2009.03.002.