Jinou ekvivalentní definicí je následující. Booleova algebra je šestice (A, ∧, ∨, −, 0, 1), kde A je neprázdná množina, 0 ∈ A je nejmenší, 1 ∈ Anejvětší prvek, − je unární operace (doplněk neboli komplement) a ∧, ∨ jsou binární operace (průsek a spojení) na A, splňující následující axiomy.
0 a 1 jsou vzájemně komplementární: −0 = 1, −1 = 0
Příklady
Booleovy algebry musí splňovat více axiomů, než svazy, a proto je jejich struktura jednotnější. Například každá konečná Booleova algebra má prvků pro nějaké a je izomorfní s direktním součinem dvouprvkových Booleových algeber.
Dvouprvková algebra
Dvouprvková algebra je algebra nad množinou A = {0, 1}, kde operace jsou dány přirozeným způsobem, tj. 0 a 1 jsou vzájemně komplementární a protože platí 0 < 1, průsek (infimum) je menší z operandů, spojení (supremum) je větší z operandů:
0
0
0
0
0
1
1
0
1
0
1
0
1
1
1
1
Nejjednodušší Booleova algebra obsahuje pouze jeden prvek, neboli 0 = 1 (zde nejde o spor, nýbrž o dvojí značení jednoho prvku). Všechny operace dávají stejný výsledek (jiné zde ani neexistují), proto se nazývá triviální. Tato algebra samozřejmě může existovat jedině tehdy, když nepoužijeme axiom nedegenerovanosti.
Množinové (potenční) algebry
U množinových algeber je algebra definována nad množinou všech podmnožin (potenční množinou) libovolné množiny S, tzn. A = 2S, nejmenším prvkem 0 je prázdná množina, největším prvkem 1 je celá množina S a operace odpovídají průniku, sjednocení a doplňku do množiny S.
Atomární a bezatomární algebry
Nekonečné Booleovy algebry mohou být atomární, kdy pod každým nenulovým prvkem je atom ; atom je prvek, pod kterým již nic neleží, tj. neexistuje takové, že . Existují naopak bezatomární algebry, které nemají žádné atomy. Příkladem bezatomárních algeber jsou husté Booleovy algebry, v nichž pro každé existuje takové, že .
Poznámka: Jako v každém svazu se používá symbol pro (nebo ekvivalentně ) a symbol pro ostré uspořádání, tj. relaci „ a zároveň “.
U algeber výroků v dvouhodnotové logice je A = {nepravda, pravda} a operace odpovídají konjunkci, disjunkci a negaci; pokud ztotožníme 0 = nepravda, 1 = pravda, algebra přejde na výše uvedenou dvouprvkovou algebru nad množinou A = {0, 1}