Hipotalamus (grč. ὑπό – hipo = ispod + θάλαμος – talamos = komora) je dio mozga koji se sastoji od brojnih malih jezgara (jedara, nukleusa) sa različitim funkcijama. Jedna od njegovih najvažnijih funkcija je veza nervnog i endokrinog sistema, preko hipofize.
Poprečni presjek majmunskog hipotalamusa ispoljava dva od glavnih hipotalamusnih nukleusa na svakoj strani tečnošću popunjene 3. komore.
Hipotalamusna jezgra
Hipotelamusna jezgra na jednoj strani hipotalamusa, što je prikazano na rekonstrukciji kompjuterske 3-D tehnike.[17]>Brain Research Bulletin 35:323-327, 1994</ref>
Spolni dimorfizam ispoljava nekoliko hipotalamusnih jezgara, tj. postoje jasne razlike i u strukturi i u funkciji između muškaraca i žena.
Neki razlike su očigledne čak u ukupnoj neuroanatomiji: najzapaženije su u preoptičkom područjuspolno dimorfnih jezgara. Međutim, većinom su to suptilne promjene u povezanosti i hemijskoj osjetljivosti pojedinih skupova neurona.
Značaj tih promjena može se prepoznati po funkcijskim razlikama između muškaraca i žena. Naprimjer, mužjaci većine vrsta preferiraju miris i izgled ženki, što je instrument u poticanju muškog spolnog ponašanja. Ako se razgradi seksualno dimorfno jezgro, ova prednost za žene kod muškaraca se smanjuje. Također, i obrazac lučenja hormona rasta je seksualno dimorfan, i to je jedan od razloga zašto su u mnogim vrstama, odrasli mužjaci mnogo veći od ženki.
Ostali razdvajajući funkcijski dimorfizmi su u odgovorima ponašanjana jajničke steroide odraslih. Mužjaci i ženke odgovaraju na steroide jajnika na različite načine, dijelom zbog toga što je ispoljavanje estrogen-osjetljivih neurona u hipotalamusu seksualno dimorfno; tj. estrogenski receptori su izraženi u različitim setovima neurona.
Estrogen i progesteron mogu uticaati na ekspresije gena posebno neurona ili dovesti do promjena u potencijalu ćelijske membrane potencijal i akt iviranju kinaza, što je dovelo do raznovrsnih ne-genomskih ćelijskih funkcija. Estrogen i progesterone se vežu za njihove srodne nukleusne hormonske receptore, koji se pomjeraju u ćelijijsko jedro u interakciju s regijama DNK, poznatim kao element hormonskog odgovora (HRE) ili se vežu za drugie faktore transkripcije. Za estrogenski receptor (ER) je dokazano da na ovaj način transaktivira druge faktore transkripcije, unatoč nedostatku elemenata estrogenog odgovora (ERE) u proksimalnoj promotorskoj regiji gena. U principu, ER i progesteronski receptor (SSS) su geni aktivatori, uz povećanu sintezu proteina i iRNK, slijedeći naknadno nakon izlaganja hormona.
Muški i ženski mozak se međusobno razlikuju u distribuciji estrogenskih receptora, a ta razlika je nepovratan posljedica ispoljavanja novorođenčadskih steroida. Receptori estrogena (i progesterona) nalaze se uglavnom u neuronima u prednjem i mediobaznom hipotalamusu, a posebno
na preoptičkom područje (gdje se nalaze LHRH neuron);
periventrikulskom nukleusu (gdje se nalaze somatostatinski neuroni) ;
u ventromedijalnom hipotalamusu (što je važno za seksualno ponašanje).
Razvoj
U životu novorođenčeta, gonadni steroidi utiču na razvoj neuroendokrinog hipotalamusa. Naprimjer, oni određuju sposobnost žena da imaju normalan reprodukcijski ciklus, a muškaraca i žena da bi se ispoljilo odgovarajuće reproduktivno ponašanje u životu odraslih.
Ako se ženki pacova ubrizgava testosteron u prvih nekoliko dana postnatalnog života (u "kritičnom razdoblju" uticaja spolnih steroidaj), hipotalamus je nepovratno muški; odrasli pacovi će biti u stanju generirati LH odgovor na estrogen (karakterističan za žene), ali će ispoljavati mušk o spolno ponašanje
Nasuprot tome, muški pacovi kastrirani tek nakon rođenja će biti feminizirani , odrasli će ispoljavti žensko seksualno ponašanje, kao odgovor na estrogen.
U primata, razvojni utjecaj androgena je manje jasniji, a posljedice se manje razumiju. U mozgu, testosteron je aromatiziran na estradiol, koji je glavni aktivni hormon za uticaj u razvoju. Ljudski testisi lučie visok nivo testosterone, od oko 8. sedmice fetusnog života do 5-6 mjeseci nakon rođenja (sličan perinatalni porast testosterona je uočena I kod mnogih vrsta), proces koji se pojavljuje na osnovu muškog fenotipa. Estrogen iz majčine cirkulacije je relativno neefikasan, dijelom zbog visokog nivoa cirkulirajućeg steroid-vezujućih proteina u trudnoći.
Spolni steroidi nisu samo važni po uticaju na razvoj hipotalamusa, posebno, prije pubertetskogstresa u ranom životu (pacova) određuje sposobnost hipotalamusa odraslih da odgovori na akutni stressor. Za razliku od gonadnih steroidnih receptora, glukokortikoidni receptori su u mozgu vrlo široko rasprostranjeni. U paraventrikularnom jezgru, oni posreduju negativnu povratnu kontrolu inteze i sekrecije kortikotropin oslobađajućih hormona (CRF), ali na drugom mjestu njihova uloga nije potpuno poznata.[18]
Funkcija
Oslobađanje hormona
Hipotalamus ima centralne neuroendokrine unkcije, među kojima je najpoznatija kontrola nad prednjim režnjem hipofize, koji zauzvrat regulira aktivnost raznih endokrinih žlijezda i organa. Oslobađajući hormoni (također znani kao oslobađajući faktori) se proizvode u hipotalamusnim jezgrima, a zatim se transportiraju duž aksonamediana eminence ili u neurohipofizu, gdje se čuvaju i, po potrebi, otpuštaju.[19]
Prednji režanj hipofize
Hipotalamus-adenohpofizna osa, koja oslobađa hormone, poznate i kao hipofiziotropni ili hormoni hipotalamusa, koji su otpušteni iz medijane eminencije, produženja hipotalamusa, u hipofizni portal sistem, koji ih prenosi na prednji režanj hipofize, gdje se odvijaju njihove regulacijske funkcije u lučenju adenohipofiznih hormona.[20]
Magnoćelijske i parvoćelijske neurosekrecijske ćelije paraventrikulskog jezgra, magnoćelijske ćelije u supraoptičkom jezgru
Porast propustljivosti za vodu ćelija distalne cijevi i sabirnog kanala u bubregu, čime se postiže reapsorpcija vode i izlučivanje koncentrirane mokraće
Također je poznato da se hormoni hipotalamus-nadbubrežne-osi (HPA) odnose na pojedine kožne bolesti i homeostazu kože. Postoje dokazi koji povezuju hiperaktivnost HPA hormona na stres-vezane bolesti kože i tumore kože.[26]
Stimulacija
Hipotalamus koordinira ponašanje mnogih hormonskih i cirkadijskih ritmova, složene obrasce neuroendokrinog ispoljavanja, kompleks homeostatskih mehanizama i važna ponašanja. Hipotalamus mora, dakle, odgovoriti na mnogo različitih signala, od kojih su neki generirani spolja, a neki iznutra. Delta val signalizacije proizlazi iz talamusa ili u korteksu utiče na lučenje hormona otpuštanja; GHRH i prolaktin su stimulirani, dok je TRH inhibiran.
Ekstremni bočni dio ventromedijskog nukleusa u hipotalamusu je odgovoran za kontrolu unosa hrane. Stimulacija ove oblasti uzrokuje povećan unos hrane. Bilateralna oštećenja ovog područja izazivaju potpuni prestanka unosa hrane. Medijalni dijelovi jezgra imaju glavninu utjecaja na bočni dio. Bilateralne lezije medijalnog dijela ventromedijalnog jezgra izaziva hiperfagiju i gojaznost životinja. Dalje lezije lateralnog dijela ventromedijalnog jezgra u istih životinja proizvode potpuni prestank unosa hrane.
Postoje različite pretpostavke koje pokušavaju objasniti ovu oblast redulacije:[28]
Lipostatska hipoteza smatra da masti biološkog tkiva proizvode signal humoralnog imuniteta koji je proporcionalan iznosu masti i djeluje na hipotalamus da smanji unos hrane i poveća izlaz energija. Bilo je očigledno da hormonleptin djeluje na hipotalamus da se smanji unos hrane i poveća proizvodnja energije.
Probavna hipoteza: gastrointestinalni hormoni, kao što su GRP, glukagoni, holecistokinin (USK) i drugi, tvrdi se, da inhibira unos hrane. Hrana koja ulazi u probavni trakt pokreće oslobađanje ovih hormona, koji djeluju na mozak za proizvodnju osjećaja sitosti. Mozak sadrži i CCK-A i CCK-B receptore.
Glucostatska hipoteza: Djelatnost u centru sitosti u ventromedijalnim jedrima vjerojatno upravlja korištenje glukoze u neuronima To je postulat da kada je u njima korištenja glukoze nisko, a samim tim i kada je arterijska glukoza u krvi razlika preko njih je niska, aktivnost preko neurona se smanjuje. Pod tim uvjetima, aktivnost centra hranjenja je nekontrolirana i osoba oseća glad. Unosom hrane se brzo povećava interventrikulska administracija2-deoksi-D-glukoza | 2-deoksiglukoze čime se smanjuje korištenje glukoze u ćelijama.
Termostatska hipoteza: Prema ovoj hipotezi, smanjenje tjelesne temperature ispod određene zadate, stimulira apetit, dok povećanje iznad tačke podešavanja inhibira apetit.
Obrada straha
Srednja stana hipotalamusa je dio kola koje kontrolira motivirano ponašanje, kao što su njegovi defanzivni oblici.[29] Analyses of Fos-labeling showed that a series of nuclei in the "behavioral control column" is important in regulating the expression of innate and conditioned defensive behaviors.[30]
Antipredatorsko defanzivno ponašanje
Izloženost predatoru (kao što je mačka) izaziva defanzivno ponašanja u laboratorijskih glodara, čak i kada životinja nikada nije bila izložena mački.[31][32] The premammillary nucleus has an important role[32][33] PMD ne modulira defanzivno ponašanje u drugim situacijama, kao što su i lezije ovog nukleusa imale minimalne efekte na rezultate post-šok zamrzavanja.[33] PMD ima značajne veze sa leđnom stranom periakveduktne sive mase, važne struktura u ispoljavanju straha.[34][35]
Pored toga, kod životinja je proučavano ispoljavanje procjene rizika iz okoliša koji je prethodno povezan sa mačkom. Fos-označena analiza je pokazala da su ćelije PMDvl najviše aktivirane strukture u hipotalamusu i inaktivirane muscimolom prije izlaganja kontekstu otklanjanja defanzivnog ponašanja. Zaključeno je da hipotalamus, uglavnom PMDvl, ima važnu ulogu u ekspresiji urođene i uvjetovanog defanzivnog ponašanja u kontaktu sa predatorom.
Društveni poraz
Isto tako, hipotalamus ima ulogu u društvenim porazima: jezgra u medijalnoj zoni su također mobilizirana tokom susreta sa agresivnim pripadnicima iste vrste. Poražena životinja ima povećanu razinu Fos-a u seksualno dimorfnoj strukturi, kao što su medijalno pred-optičko jezgro, u ventrolateralnom dijelu ventromedijalnog i ventralne premamilarnog jezgra.[36] Takve strukture su važne u drugim modelima društvenog ponašanja, kao što je i spolno agresivno ponašanje. Pored toga, premamilsko jezgro je također mobilizirano, u dorzomedijalnom dijelu, ali ne i u ventrolateralnom.[36] Lezije u ovom jezgru otklanjaju defanzivno ponašanje kao u slučaju hlađenja i ponovljeno držanja.[36]
^Izuzev specificiranog u tabeli, Guyton 12. izdanje
^Malenka R. C., Nestler E. J., Hyman S. E. (2009). Sydor A,, Brown R. Y. (ured.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience. New York: McGraw-Hill Medical. ISBN9780071481274. Provjerite vrijednost parametra |isbn=: invalid character (pomoć).CS1 održavanje: više imena: authors list (link)
^Melmed S, Jameson JL (2005). "Disorders of the anterior pituitary and hypothalamus". u Kasper DL, Braunwald E, Fauci AS; et al. (ured.). Harrison's Principles of Internal Medicine (16th izd.). New York, NY: McGraw-Hill. str. 2076–97. ISBN0-07-139140-1.CS1 održavanje: više imena: editors list (link)
^Horn, A. M.; Robinson, I. C. A. F.; Fink, G. (1. 2. 1985). "Oxytocin and vasopressin in rat hypophysial portal blood: experimental studies in normal and Brattleboro rats". Journal of Endocrinology. 104 (2): 211–NP. doi:10.1677/joe.0.1040211. PMID3968510.
^Date, Y; Mondal, MS; Matsukura, S; Ueta, Y; Yamashita, H; Kaiya, H; Kangawa, K; Nakazato, M (Mar 10, 2000). "Distribution of orexin/hypocretin in the rat median eminence and pituitary". Brain research. Molecular brain research. 76 (1): 1–6. doi:10.1016/s0169-328x(99)00317-4. PMID10719209.
^Watanobe, H; Takebe, K (april 1993). "In vivo release of neurotensin from the median eminence of ovariectomized estrogen-primed rats as estimated by push-pull perfusion: correlation with luteinizing hormone and prolactin surges". Neuroendocrinology. 57 (4): 760–4. doi:10.1159/000126434. PMID8367038.
^Spinazzi, R; Andreis, PG; Rossi, GP; Nussdorfer, GG (mart 2006). "Orexins in the regulation of the hypothalamic-pituitary-adrenal axis". Pharmacological reviews. 58 (1): 46–57. doi:10.1124/pr.58.1.4. PMID16507882.