Прынц Каспіян
|
Read other articles:
Уколико сте тражили ТВ серију из 2007. године, погледајте чланак Позориште у кући (ТВ серија из 2007). Позориште у кућиПозориште у кућиЖанркомедијаФорматТелевизијска серијаПродуцентска кућаРадио-телевизија БеоградСценариоНовак Новак Дејан ЋорковићРежијаДејан ЋорковићУл...
Bursa Efek AustraliaAustralian Securities ExchangeJenisBursa sahamLokasiSydney, AustraliaDidirikan1987PemilikASX LimitedMata uangDolar AustraliaEmiten tercatat2,122 (Januari 2013)[1]Kapitalisasi pasar$1,4 trilyun (Januari 2013)[1]Situs webwww.asx.com.au ASX LimitedJenisPublikKode emitenASX: ASXIndustriPasar sekuritasDidirikan1987, tapi dating kembali ke tahun 1861KantorpusatSydney, AustraliaTokohkunciRick Holliday-Smith, (Ketua)Elmer Funke Kupper, (CEO dan Direktur M...
Konsonan geser gigi nirsuaraθNomor IPA130Pengkodean karakterEntitas (desimal)θUnikode (heks)U+03B8X-SAMPATKirshenbaumTBraille Gambar Sampel suaranoicon sumber · bantuan Konsonan geser gigi nirsuara adalah jenis dari suara konsonan gigi yang digunakan dalam berbagai bahasa. Simbol IPAnya adalah ⟨θ⟩. Dalam bahasa Indonesia tidak ada huruf yang mewakili [θ]. Kata-kata Bahasa Kata IPA Arti Albania thotë [θɔtə] berkata Arab ثابت [ˈθaːbit] tetap Inggris thin [
Caitlin Elizabeth Clark (* 22. Januar 2002 in Des Moines, Iowa, USA) ist eine US-amerikanische College-Basketballspielerin die für die Iowa Hawkeyes in der Big Ten Conference Basketball spielt. Die 1,83 m große Spielerin[1] wird als Guard eingesetzt. Sie gilt als eine der besten College-Basketballspielerinnen aller Zeiten (Wunderkind).[2] ESPN-Kommentator Stephen A. Smith ging sogar noch einen Schritt weiter und verglich die 21-Jährige mit einem NBA-Superstar. „Sie i...
Dieser Artikel behandelt den 1945 zwangsaufgelösten Sportverein des ersten Deutschen Fußballmeisters. 1991 wurde die Traditionslinie des VfB Leipzig als Nachfolgeverein des 1. FC Lokomotive Leipzig fortgesetzt. VfB Leipzig Basisdaten Name Verein für Bewegungsspiele Leipzig e. V. Gründung 11.11.1893, ab 1945 u. a. 1. FC Lok Leipzig, ab 1991 wieder VfB Leipzig Auflösung 07.10.2021 (aufgegangen im 1. FC Lok Leipzig) Farben Blau-Weiß Mitglieder 23 (Stand 01.07.2021) Erste Fußballmanns...
Pour les articles homonymes, voir FSF. Fédération sportive de France Sigle FSF Nom(s) précédent(s) Fédération gymnastique et sportive des patronages de France (FGSPF) Sport(s) représenté(s) Omnisports Création 1947 Disparition 1968 Président François Hébrard (1947-1955)Gilbert Olivier (1955-1965)Guy Fournet (1965-1968) Siège 5 place Saint-Thomas-d'AquinParis modifier La Fédération sportive de France (FSF) nait en 1947 de l'officialisation de la fusion, imposée par le ré...
Czech tennis player Zdeněk KolářKolář at the 2023 French OpenCountry (sports) Czech RepublicResidenceBystřice nad Pernštejnem, Czech RepublicBorn (1996-10-09) 9 October 1996 (age 27)Bystřice nad Pernštejnem, Czech RepublicHeight1.85 m (6 ft 1 in)Turned pro2014PlaysRight-handed (two-handed backhand)CoachZdenek Kolar Sr.Prize moneyUS $881,607SinglesCareer record1–3 (25.0%)Career titles0Highest rankingNo. 111 (13 June 2022)Current ...
Academy of Performing Arts in SarajevoTypeFacultyEstablished1981; 42 years ago (1981)DeanFaruk LončarevićAdministrative staff30LocationSarajevo, Bosnia and HerzegovinaCampusUrbanWebsitewww.asu.unsa.ba The Academy of Performing Arts in Sarajevo (Bosnian: Akademija scenskih umjetnosti Sarajevo / Академија сценских умјетности Сарајево) is a faculty within the University of Sarajevo in Sarajevo, Bosnia and Herzegovina, dedicated to the perfor...
Protein-coding gene in the species Homo sapiens CREMIdentifiersAliasesCREM, CREM-2, ICER, hCREM-2, cAMP responsive element modulatorExternal IDsOMIM: 123812 MGI: 88495 HomoloGene: 84591 GeneCards: CREM Gene location (Human)Chr.Chromosome 10 (human)[1]Band10p11.21Start35,126,791 bp[1]End35,212,958 bp[1]Gene location (Mouse)Chr.Chromosome 18 (mouse)[2]Band18|18 A1Start3,266,048 bp[2]End3,337,748 bp[2]RNA expression patternBgeeHumanMouse (orth...
U.S. House district for Mississippi For other uses, see MS-3 (disambiguation). Mississippi's 3rd congressional districtInteractive map of district boundaries since January 3, 2023Representative Michael GuestR–BrandonArea12,185.28 sq mi (31,559.7 km2)Distribution59.67% rural40.33% urbanPopulation (2022)735,973[1]Median householdincome$56,209[2]Ethnicity59.8% White35.1% Black2.3% Hispanic1.0% Asian1.0% other0.8% Two or more racesCook PVIR+15[3] Mis...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tatra 813 – news · newspapers · books · scholar · JSTOR (January 2013) (Learn how and when to remove this template message) The Tatra T813 was a truck produced in Czechoslovakia by the Tatra company. It was produced from 1967 to 1982.[1] The basic repre...
Member of the Dutch House of Representatives In this Dutch name, the surname is De Groot, not Groot. Peter de GrootDe Groot in 2020Member of the House of RepresentativesIncumbentAssumed office 31 March 2021Member of the Harderwijk municipal councilIn office27 March 2014[1] – 22 April 2021[2]Succeeded byDavid Korver Personal detailsBornPeter Christiaan de Groot[3] (1980-05-09) 9 May 1980 (age 43)Harderwijk, NetherlandsPolitical partyPeople's Party fo...
1983 novel by Edward Elmer Smith First edition (publ. Berkley BooksCover art by Mark Bright Subspace Encounter is a 1983 science fiction novel by American writer E. E. Smith, a posthumously published sequel to his Subspace Explorers. Plot summary The book describes two spaces that exist simultaneously in the universe, each of three spatial dimensions, and each occupied by human beings of roughly equal technological standing. The people in the two spaces have no awareness of each other, but ea...
ParasakthiSutradara Krishnan-Panju S. Panju Produser P. A. Perumal Mudaliar A. V. Meiyappan Ditulis oleh Karunanidhi SkenarioKarunanidhiBerdasarkanParasakthioleh Pavalar BalasundaramPemeranSivaji GanesanS. V. SahasranamamS. S. RajendranSriranjani Jr.Pandari BaiPenata musikR. SudarsanamSkor latar belakang: Saraswathi Stores OrchestraSinematograferS. Maruti RaoPenyuntingS. Panju (Punjabi)[1]DistributorNational PicturesTanggal rilis 17 Oktober 1952 (1952-10-17) Durasi170 menit...
1973 song originally performed by Ray Price Not to be confused with You're the Best Thing or You Are the Best Thing. For other uses, see You're the Best Thing That Ever Happened to Me (disambiguation). You're the Best Thing That Ever Happened To MeSingle by Ray Pricefrom the album You're the Best Thing That Ever Happened To Me B-sideWhat Kind of Love is ThisReleasedJuly 1973 (U.S.)Recordedca. May 1973GenreCountryLength3:50LabelColumbia 45889Songwriter(s)Jim WeatherlyProducer(s)Don LawRay Pric...
Some of this article's listed sources may not be reliable. Please help improve this article by looking for better, more reliable sources. Unreliable citations may be challenged and removed. (October 2022) (Learn how and when to remove this template message) Mohammad Iqbal with his son Javid on Eid day in 1930 Muhammad Iqbal (1877–1938) was a prolific writer who authored many works covering various fields and genres such as poetry, philosophy and mysticism. He expressed his ideas in many fo...
Human settlement in EnglandMallerstangA steam train at Aisgillon the Settle–Carlisle lineMallerstangLocation within CumbriaPopulation173 (2011 (including Wharton))[1]OS grid referenceNY782015Civil parishMallerstangDistrictEdenShire countyCumbriaRegionNorth WestCountryEnglandSovereign stateUnited KingdomPost townKIRKBY STEPHENPostcode districtCA17Dialling code01768PoliceCumbriaFireCumbriaAmbulanceNorth West UK ParliamentPenrith and the Border ...
Карта Куры Азербайджан — относительно богатая водными ресурсами страна. Здесь находится около 8400 рек, из которых 850 имеют длину не менее 10 км. 24 реки имеют длину свыше 100 км. На территории Азербайджана имеются около 250 озёр, часть которых высыхает летом. Территория ...
今日日本標準時(UTC+9) 丙申・翼宿・火曜 旧暦 令和6年 11月112日 (春分、清明まで2日) CE 2024年 4月2日 AH 1445年 9月23日 JD 2460403.05625 22:21 [更新] 旧暦(きゅうれき)とは、改暦があった場合のそれ以前に使われていた暦法のことである。改暦後の暦法は新暦。多くの国ではグレゴリオ暦が現行暦のため、グレゴリオ暦の前の暦法を指す. 東アジア 東アジアの多くの国では、...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) Some of this section's listed sources may not be reliable. Please help improve this article by looking for better, more reliable sources. Unreliable citations may be challenged and removed. (March 2019) (Learn how and when to remove this message) This article may need to be rewritten to comply with Wikipedia's quality standards. You can hel...