Terahertz spectroscopy and technology

Terahertz spectroscopy detects and controls properties of matter with electromagnetic fields that are in the frequency range between a few hundred gigahertz and several terahertz (abbreviated as THz). In many-body systems, several of the relevant states have an energy difference that matches with the energy of a THz photon. Therefore, THz spectroscopy provides a particularly powerful method in resolving and controlling individual transitions between different many-body states. By doing this, one gains new insights about many-body quantum kinetics and how that can be utilized in developing new technologies that are optimized up to the elementary quantum level.

Different electronic excitations within semiconductors are already widely used in lasers, electronic components and computers. At the same time, they constitute an interesting many-body system whose quantum properties can be modified, e.g., via a nanostructure design. Consequently, THz spectroscopy on semiconductors is relevant in revealing both new technological potentials of nanostructures as well as in exploring the fundamental properties of many-body systems in a controlled fashion.

Background

There are a great variety of techniques to generate THz radiation and to detect THz fields. One can, e.g., use an antenna, a quantum-cascade laser, a free-electron laser, or optical rectification to produce well-defined THz sources. The resulting THz field can be characterized via its electric field ETHz(t). Present-day experiments can already output ETHz(t) that has a peak value in the range of MV/cm (megavolts per centimeter).[1] To estimate how strong such fields are, one can compute the level of energy change such fields induce to an electron over microscopic distance of one nanometer (nm), i.e., L = 1 nm. One simply multiplies the peak ETHz(t) with elementary charge e and L to obtain e ETHz(t) L = 100 meV. In other words, such fields have a major effect on electronic systems because the mere field strength of ETHz(t) can induce electronic transitions over microscopic scales. One possibility is to use such THz fields to study Bloch oscillations[2][3] where semiconductor electrons move through the Brillouin zone, just to return to where they started, giving rise to the Bloch oscillations.

The THz sources can be also extremely short,[4] down to single cycle of THz field's oscillation. For one THz, that means duration in the range of one picosecond (ps). Consequently, one can use THz fields to monitor and control ultrafast processes in semiconductors or to produce ultrafast switching in semiconductor components. Obviously, the combination of ultrafast duration and strong peak ETHz(t) provides vast new possibilities to systematic studies in semiconductors.

Besides the strength and duration of ETHz(t), the THz field's photon energy plays a vital role in semiconductor investigations because it can be made resonant with several intriguing many-body transitions. For example, electrons in conduction band and holes, i.e., electronic vacancies, in valence band attract each other via the Coulomb interaction. Under suitable conditions, electrons and holes can be bound to excitons that are hydrogen-like states of matter. At the same time, the exciton binding energy is few to hundreds of meV that can be matched energetically with a THz photon. Therefore, the presence of excitons can be uniquely detected[5][6] based on the absorption spectrum of a weak THz field.[7][8] Also simple states, such as plasma and correlated electron–hole plasma[9] can be monitored or modified by THz fields.

Terahertz time-domain spectroscopy

In optical spectroscopy, the detectors typically measure the intensity of the light field rather than the electric field because there are no detectors that can directly measure electromagnetic fields in the optical range. However, there are multiple techniques, such as antennas and electro-optical sampling, that can be applied to measure the time evolution of ETHz(t) directly. For example, one can propagate a THz pulse through a semiconductor sample and measure the transmitted and reflected fields as function of time. Therefore, one collects information of semiconductor excitation dynamics completely in time domain, which is the general principle of the terahertz time-domain spectroscopy.

Using Terahertz for developing transmission images of packaged items.[10]

By using short THz pulses,[4] a great variety of physical phenomena have already been studied. For unexcited, intrinsic semiconductors one can determine the complex permittivity or THz-absorption coefficient and refractive index, respectively.[11] The frequency of transversal-optical phonons, to which THz photons can couple, lies for most semiconductors at several THz.[12] Free carriers in doped semiconductors or optically excited semiconductors lead to a considerable absorption of THz photons.[13] Since THz pulses passes through non-metallic materials, they can be used for inspection and transmission of packaged items.

Terahertz-induced plasma and exciton transitions

The THz fields can be applied to accelerate electrons out of their equilibrium. If this is done fast enough, one can measure the elementary processes, such as how fast the screening of the Coulomb interaction is built up. This was experimentally explored in Ref.[14] where it was shown that screening is complete within tens of femtoseconds in semiconductors. These insights are very important to understand how electronic plasma behaves in solids.

The Coulomb interaction can also pair electrons and holes into excitons, as discussed above. Due to their analog to the hydrogen atom, excitons have bound states that can be uniquely identified by the usual quantum numbers 1s, 2s, 2p, and so on. In particular, 1s-to-2p transition is dipole allowed and can be directly generated by ETHz(t) if the photon energy matches the transition energy. In gallium arsenide-type systems, this transition energy is roughly 4 meV that corresponds to 1 THz photons. At resonance, the dipole d1s,2p defines the Rabi energy ΩRabi = d1s,2p ETHz(t) that determines the time scale at which the 1s-to-2p transition proceeds.

For example, one can excite the excitonic transition with an additional optical pulse which is synchronized with the THz pulse. This technique is called transient THz spectroscopy.[4] Using this technique one can follow the formation dynamics of excitons[7][8] or observe THz gain arising from intraexcitonic transitions.[15][16]

Since a THz pulse can be intense and short, e.g., single-cycle, it is experimentally possible to realize situations where duration of the pulse, time scale related to Rabi- as well as the THz photon energy ħω are degenerate. In this situation, one enters the realm of extreme nonlinear optics[17] where the usual approximations, such as the rotating-wave approximation (abbreviated as RWA) or the conditions for complete state transfer, break down. As a result, the Rabi oscillations become strongly distorted by the non-RWA contributions, the multiphoton absorption or emission processes, and the dynamic Franz–Keldysh effect, as measured in Refs.[18][19]

By using a free-electron laser, one can generate longer THz pulses that are more suitable for detecting the Rabi oscillations directly. This technique could indeed demonstrate the Rabi oscillations, or actually the related Autler–Townes splitting, in experiments.[20] The Rabi splitting has also been measured with a short THz pulse[21] and also the onset to multi-THz-photon ionization has been detected,[22] as the THz fields are made stronger. Recently, it has also been shown that the Coulomb interaction causes nominally dipole-forbidden intra-excitonic transitions to become partially allowed.[23]

Theory of terahertz transitions

Terahertz transitions in solids can be systematically approached by generalizing the semiconductor Bloch equations[9] and the related many-body correlation dynamics. At this level, one realizes the THz field are directly absorbed by two-particle correlations that modify the quantum kinetics of electron and hole distributions. Therefore, a systematic THz analysis must include the quantum kinetics of many-body correlations, that can be treated systematically, e.g., with the cluster-expansion approach. At this level, one can explain and predict a wide range of effects with the same theory, ranging from Drude-like response[13] of plasma to extreme nonlinear effects of excitons.

See also

References

  1. ^ Junginger, F.; Sell, A.; Schubert, O.; Mayer, B.; Brida, D.; Marangoni, M.; Cerullo, G.; Leitenstorfer, A. et al. (2010). "Single-cycle multiterahertz transients with peak fields above 10 MV/cm". Optics Letters 35 (15): 2645. doi:10.1364/OL.35.002645
  2. ^ Feldmann, J.; Leo, K.; Shah, J.; Miller, D.; Cunningham, J.; Meier, T.; von Plessen, G.; Schulze, A.; Thomas, P.; Schmitt-Rink, S. (1992). "Optical investigation of Bloch oscillations in a semiconductor superlattice". Physical Review B 46 (11): 7252–7255. doi:10.1103/PhysRevB.46.7252
  3. ^ Ben Dahan, Maxime; Peik, Ekkehard; Reichel, Jakob; Castin, Yvan; Salomon, Christophe (1996). "Bloch Oscillations of Atoms in an Optical Potential". Physical Review Letters 76 (24): 4508–4511. doi:10.1103/PhysRevLett.76.4508
  4. ^ a b c Jepsen, P.U.; Cooke, D.G.; Koch, M. (2011). "Terahertz spectroscopy and imaging - Modern techniques and applications". Laser & Photonics Reviews 5 (1): 124–166. doi:10.1002/lpor.201000011
  5. ^ Timusk, T.; Navarro, H.; Lipari, N.O.; Altarelli, M. (1978). "Far-infrared absorption by excitons in silicon". Solid State Communications 25 (4): 217–219. doi:10.1016/0038-1098(78)90216-8
  6. ^ Kira, M.; Hoyer, W.; Stroucken, T.; Koch, S. (2001). "Exciton Formation in Semiconductors and the Influence of a Photonic Environment". Physical Review Letters 87 (17). doi:10.1103/PhysRevLett.87.176401
  7. ^ a b Kaindl, R. A.; Carnahan, M. A.; Hägele, D.; Lövenich, R.; Chemla, D. S. (2003). "Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas". Nature 423 (6941): 734–738. doi:10.1038/nature01676
  8. ^ a b Kira, M.; Hoyer, W.; Koch, S.W. (2004). "Terahertz signatures of the exciton formation dynamics in non-resonantly excited semiconductors". Solid State Communications 129 (11): 733–736. doi:10.1016/j.ssc.2003.12.015
  9. ^ a b Kira, M.; Koch, S.W. (2006). "Many-body correlations and excitonic effects in semiconductor spectroscopy". Progress in Quantum Electronics. 30 (5): 155–296. Bibcode:2006PQE....30..155K. doi:10.1016/j.pquantelec.2006.12.002. ISSN 0079-6727.
  10. ^ US 10783612, Ahi, Kiarash, "Method and system for enhancing resolution of terahertz imaging", published 2020-09-22 
  11. ^ Grischkowsky, D.; Keiding, Søren; Exter, Martin van; Fattinger, Ch. (1990). "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors". Journal of the Optical Society of America B 7 (10): 2006. doi:10.1364/JOSAB.7.002006
  12. ^ Han, P. Y.; Zhang, X.-C. (1998). "Coherent, broadband midinfrared terahertz beam sensors". Applied Physics Letters 73 (21): 3049. doi:10.1063/1.122668
  13. ^ a b Zhang, W.; Azad, Abul K.; Grischkowsky, D. (2003). "Terahertz studies of carrier dynamics and dielectric response of n-type, freestanding epitaxial GaN". Applied Physics Letters 82 (17): 2841. doi:10.1063/1.1569988
  14. ^ Huber, R.; Tauser, F.; Brodschelm, A.; Bichler, M.; Abstreiter, G.; Leitenstorfer, A. (2001). Nature 414 (6861): 286–289. doi:10.1038/35104522
  15. ^ Kira, M.; Koch, S. (2004). "Exciton-Population Inversion and Terahertz Gain in Semiconductors Excited to Resonance". Physical Review Letters 93 (7). doi:10.1103/PhysRevLett.93.076402
  16. ^ Huber, Rupert; Schmid, Ben; Shen, Y.; Chemla, Daniel; Kaindl, Robert (2006). "Stimulated Terahertz Emission from Intraexcitonic Transitions in Cu2O". Physical Review Letters 96 (1). doi:10.1103/PhysRevLett.96.017402
  17. ^ Wegener, M. (2005). M. Extreme Nonlinear Optics: An Introduction. Springer. ISBN 978-3642060908
  18. ^ Danielson, J.; Lee, Yun-Shik; Prineas, J.; Steiner, J.; Kira, M.; Koch, S. (2007). "Interaction of Strong Single-Cycle Terahertz Pulses with Semiconductor Quantum Wells". Physical Review Letters 99 (23). doi:10.1103/PhysRevLett.99.237401
  19. ^ Leinß, S.; Kampfrath, T.; v.Volkmann, K.; Wolf, M.; Steiner, J.; Kira, M.; Koch, S.; Leitenstorfer, A. et al. (2008). "Terahertz Coherent Control of Optically Dark Paraexcitons in Cu2O". Physical Review Letters 101 (24). doi:10.1103/PhysRevLett.101.246401
  20. ^ Wagner, Martin; Schneider, Harald; Stehr, Dominik; Winnerl, Stephan; Andrews, Aaron M.; Schartner, Stephan; Strasser, Gottfried; Helm, Manfred (2010). "Observation of the Intra-exciton Autler-Townes Effect in GaAs/AlGaAs Semiconductor Quantum Wells". Physical Review Letters 105 (16). doi:10.1103/PhysRevLett.105.167401
  21. ^ Steiner, J.; Kira, M.; Koch, S. (2008). "Optical nonlinearities and Rabi flopping of an exciton population in a semiconductor interacting with strong terahertz fields". Physical Review B 77 (16). doi:10.1103/PhysRevB.77.165308
  22. ^ Ewers, B.; Köster, N. S.; Woscholski, R.; Koch, M.; Chatterjee, S.; Khitrova, G.; Gibbs, H. M.; Klettke, A. C.; Kira, M.; Koch, S. W. (2012). "Ionization of coherent excitons by strong terahertz fields". Physical Review B 85 (7). doi:10.1103/PhysRevB.85.075307
  23. ^ Rice, W. D.; Kono, J.; Zybell, S.; Winnerl, S.; Bhattacharyya, J.; Schneider, H.; Helm, M.; Ewers, B.; Chernikov, A.; Koch, M.; Chatterjee, S.; Khitrova, G.; Gibbs, H. M.; Schneebeli, L.; Breddermann, B.; Kira, M.; Koch, S. W. (2013). "Observation of Forbidden Exciton Transitions Mediated by Coulomb Interactions in Photoexcited Semiconductor Quantum Wells". Physical Review Letters 110 (13). doi:10.1103/PhysRevLett.110.137404

Read other articles:

Jonas Bager[1]​ Bager en 2020Datos personalesNacimiento Hadsten, Dinamarca18 de julio de 1996 (27 años)Nacionalidad(es) DanesaAltura 1,82 m (6′ 0″)Carrera deportivaDeporte FútbolClub profesionalDebut deportivo 2015(Randers FC)Club Royal Charleroi S. C.Liga Primera División de BélgicaPosición DefensaGoles en clubes 4Trayectoria Randers FC (2015-2019) Royale Union Saint-Gilloise (2019-2022) Royal Charleroi S. C. (2022-presente)[editar datos en Wikidata] Jonas Valen...

 

المئذنة أو المنارة أو الصومعة، هي مبنى أو برج مرتفع طويل يكون ملحقا بالمساجد وغرضه إيصال صوت الأذان للمسلمين ودعوتهم للصلاة.[1][2][3] قائمة مآذن جمهورية إيران تحتوي هذه القائمة على أسماء مآذن المنتشرة في أنحاء جمهورية إيران. اسم موقع صورة ملاحظات لمئذنة والجامع نغ

 

Jestädter Weinberg IUCN-Kategorie IV – Habitat/Species Management Area Blick über die Werraaue auf den südwestlichen Hang des Weinbergs. Im Hintergrund der Höhenzug der Gobert. Blick über die Werraaue auf den südwestlichen Hang des Weinbergs. Im Hintergrund der Höhenzug der Gobert. Lage Westlich von Jestädt im nordhessischen Werra-Meißner-Kreis. Fläche 60,19 Hektar Kennung 636.008 WDPA-ID 82016 Geographische Lage 51° 13′ N, 10° 0′ O51.21718510.0...

Edith Taliaferro Edith Taliaferro hacia 1920Información personalNacimiento 21 de diciembre de 1894 Richmond (Virginia), Estados UnidosFallecimiento 2 de marzo de 1958 Newtown (Connecticut), Estados UnidosCausa de muerte Enfermedad Nacionalidad EstadounidenseLengua materna Inglés FamiliaCónyuge Earle Browne, House B. JamesonInformación profesionalOcupación ActrizAños activa desde 1896[editar datos en Wikidata] Edith Taliaferro (21 de diciembre de 1894 – 2 de marzo de 1958) fu...

 

Town in Connecticut, United StatesBethany, ConnecticutTownTown of BethanyBethany Veterans Wall of Honor SealMotto: Rural Is Beautiful[1][2] New Haven County and Connecticut South Central Connecticut Planning Region and ConnecticutShow BethanyShow ConnecticutShow the United StatesCoordinates: 41°25′32″N 72°59′33″W / 41.42556°N 72.99250°W / 41.42556; -72.99250Country United StatesU.S. state ConnecticutCountyNew HavenRe...

 

Cypriot football club Football clubMEAP NisouFull nameMikti Erithrou Astera Proodou Pera Choriou NisouNickname(s)MEAP NisouFounded1980; 43 years ago (1980)GroundTheodorio Koinotiko (Nisou)Capacity1,000ChairmanAndreas ChrysostomouLeagueSecond Division2022–23Second Division, 7th Home colours Away colours MEAP Pera Choriou Nisou (Greek: ΜΕΑΠ Πέρα Χωριού Νήσου; short for Μικτή Ερυθρού Αστέρα Προόδου Πέρα Χωριού Νήσου, ...

American television series Grown UpsThe Grown Ups cast (from left to right), Dave Ruby as Gordon Hammel, Marissa Ribisi as Shari Hammel and Jaleel White as J. Calvin FrazierGenreSitcomCreated byMatthew MillerWritten byValerie AhernMark AmatoMark BluntmanHoward BusgangPamela EellsArthur HarrisBob HilgenbergJohn HunterStephen LloydChristian McLaughlinMatthew MillerRick NewbergerRob MuirJeny QuineBilly RibackScott J. RosenbaumDan SignerChuck SnyderVan WhitfieldDirected byRichard CorrellMatthew D...

 

This is a list of urban areas in the European Union with over 500,000 inhabitants as of 2022. The data comes from Demographia and the United Nations Department of Economic and Social Affairs.[1][2] Demographia provides figures for urban areas (including conurbations),[1] while the UN DESA figures are for agglomerations only.[2] For comparison, Function Urban Area (FUA) population figures by Eurostat are also provided,[3] however, these measure the wider...

 

Robert Smalls Robert Smalls (5 April 1839 – 23 Februari 1915) adalah seorang pengusaha, penerbit dan politikus asal Amerika Serikat. Lahir dalam perbudakan di Beaufort, Carolina Selatan, ia membebaskan dirinya sendiri, krunya dan keluarganya pada Perang Saudara Amerika dengan mengkomandani kapal angkut Konfederasi, CSS Planter, di pelabuhan Charleston, pada 13 Mei 1862, dan berlabuh dari perairan yang dikuasai Konfederasi ke blokade AS yang berada di dekatnya. Ia kemudian meng...

Third video game console generation, including the Nintendo Entertainment System Nintendo's Nintendo Entertainment System was released in North America in 1985, the console's first market outside of Japan. Part of a series on theHistory of video games Early history Early history of video games Early mainframe games Consoles History of video game consoles Console war 1st generation (1972–1983) 2nd generation (1976–1992) Video game crash of 1983 3rd generation (1983–2003) 4th generation (...

 

Super Bowl I 1 2 3 4 Gesamt Packers 7 7 14 7 35 Chiefs 0 10 0 0 10 Datum 15. Januar 1967 Stadion Los Angeles Memorial Coliseum Stadt Los Angeles MVP Bart Starr, Quarterback Favorit Packers mit 14 Nationalhymne Bands der University of Arizona und University of Michigan Münzwurf Norm Schachter Halbzeitshow Bands der University of Arizona und University of Michigan Besucherzahl 61.946 Fernsehübertragung Network CBS und NBC Kommentatoren CBS: Ray Scott, Jack Whitaker und Frank GiffordNBC: Curt ...

 

Location of Bonneville County in Idaho This is a list of the National Register of Historic Places listings in Bonneville County, Idaho. This is intended to be a complete list of the properties and districts on the National Register of Historic Places in Bonneville County, Idaho, United States. Latitude and longitude coordinates are provided for many National Register properties and districts; these locations may be seen together in a map.[1] There are 32 properties and districts liste...

Ranulf de BlondevilleBorn1170Montgomeryshire, Powys, WalesDied26 October 1232Wallingford, Berkshire, EnglandResting placeChester Abbey, ChesterTitleEarl of ChesterTerm1181–1232PredecessorHugh de Kevelioc, 5th Earl of ChesterSuccessorMatilda of Chester, Countess of Salisbury (suo jure)Spouse(s)Constance of Brittany (annulled 1199)Clemence de Fougères SIGILLUM RANULFI COMITIS CESTRIE ET LINCOLNIE (Seal of Ranulf Count of Chester and of Lincoln). His arms of a garb of wheat are visible on his...

 

Indian singer, anchor and producer This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this template message) Nehha RajpalSpouseAkash RajpalMusical careerBirt...

 

Punctuation conventions used in Chinese languages See also: CJK Symbols and Punctuation Chinese punctuation has punctuation marks that are derived from both Chinese and Western sources. Although there was a long native tradition of textual annotation to indicate the boundaries of sentences and clauses, the concept of punctuation marks being a mandatory and integral part of the text was only adapted in the written language during the 20th century due to Western influence. Before that, the conc...

Plaza Theatre at Briarcliff Plaza Majestic Diner at Briarcliff Plaza Briarcliff Plaza, also known as Ponce de Leon Plaza, is a strip mall-type shopping center designed by architect George Harwell Bond and opened in 1939 at the southwest corner of Ponce de Leon Avenue and Highland Avenue in the Poncey-Highland neighborhood of Atlanta. Braircliff Plaza was developed by Relnac Inc., and was proposed to cost $300,000. Construction began after the last home on the block was purchased by Relnac Inc...

 

Tell al-HaraHarith al-Jawlan, Jabal HarithTell al-Hara from the west, 2014Highest pointElevation1,127 m (3,698 ft)Coordinates33°3′46″N 35°59′31″E / 33.06278°N 35.99194°E / 33.06278; 35.99194GeographyTell al-HaraLocation of Tell al-Hara in Syria LocationAl-Sanamayn District, Daraa Governorate, SyriaGeologyMountain typeConical hill Tell al-Ḥāra, formerly known as Ḥārith al-Jawlān or Jabal Ḥārith, is the highest point in the Daraa Gove...

 

Samuel's name (second from top) in the list of Lorsch monks in the Reichenau confraternity book Samuel (died 7 February 856) was the abbot of Lorsch and bishop of Worms from 837 or 838 until his death. The twelfth-century Chronicon Laureshamense claims that Samuel was raised from childhood at Lorsch. The future bishop of Worms may be the same person as the monk of Fulda named Samuel who was educated under Alcuin at Saint Martin's of Tours and there befriended Hrabanus Maurus, who dedicated se...

American Chabad rabbi Mordechai LightstoneLightstone as a TED resident in 2018Born1984 (age 38–39)OccupationSocial media director for Chabad.org Mordechai Lightstone (born 1984[1]) is a Chabad rabbi who directs social media for Chabad.org and is the founder of Tech Tribe. Part of a series onChabad(Rebbes and Chasidim) Rebbes of Chabad Shneur Zalman of Liadi (Alter Rebbe) Dovber Schneuri (Mitteler Rebbe) Menachem M. Schneersohn (Tzemach Tzedek) Shmuel Schneersohn (Rebbe Maha...

 

French vocal group AhezThe three singers with the band Eben.Background informationOriginCarhaix, Brittany, FranceGenresKan ha diskan[1]Celtic fusion[1]Years active2018–presentMembersMarine LavigneSterenn DiridollouSterenn Le Guillou Ahez is a French vocal group from Carhaix, Brittany, consisting of Marine Lavigne, Sterenn Diridollou and Sterenn Le Guillou.[1] The trio represented France in the Eurovision Song Contest 2022 together with Alvan with the song Fulenn.[...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!