Prime quadruplet

In number theory, a prime quadruplet (sometimes called a prime quadruple) is a set of four prime numbers of the form {p, p + 2, p + 6, p + 8}.[1] This represents the closest possible grouping of four primes larger than 3, and is the only prime constellation of length 4.

Prime quadruplets

The first eight prime quadruplets are:

{5, 7, 11, 13}, {11, 13, 17, 19}, {101, 103, 107, 109}, {191, 193, 197, 199}, {821, 823, 827, 829}, {1481, 1483, 1487, 1489}, {1871, 1873, 1877, 1879}, {2081, 2083, 2087, 2089} (sequence A007530 in the OEIS)

All prime quadruplets except {5, 7, 11, 13} are of the form {30n + 11, 30n + 13, 30n + 17, 30n + 19} for some integer n. (This structure is necessary to ensure that none of the four primes are divisible by 2, 3 or 5). A prime quadruplet of this form is also called a prime decade.

All such prime decades have centers of form 210n + 15, 210n + 105, and 210n + 195 since the centers must be -1, 0, or +1 modulo 7. The +15 form may also give rise to a (high) prime quintuplet; the +195 form can also give rise to a (low) quintuplet; while the +105 form can yield both types of quintuplets and possibly prime sextuplets. It is no accident that each prime in a prime decade is displaced from its center by a power of 2, actually 2 or 4, since all centers are odd and divisible by both 3 and 5.

A prime quadruplet can be described as a consecutive pair of twin primes, two overlapping sets of prime triplets, or two intermixed pairs of sexy primes. These "quad" primes 11 or above also form the core of prime quintuplets and prime sextuplets by adding or subtracting 8 from their respective centers.

It is not known if there are infinitely many prime quadruplets. A proof that there are infinitely many would imply the twin prime conjecture, but it is consistent with current knowledge that there may be infinitely many pairs of twin primes and only finitely many prime quadruplets. The number of prime quadruplets with n digits in base 10 for n = 2, 3, 4, ... is

1, 3, 7, 27, 128, 733, 3869, 23620, 152141, 1028789, 7188960, 51672312, 381226246, 2873279651 (sequence A120120 in the OEIS).

As of February 2019 the largest known prime quadruplet has 10132 digits.[2] It starts with p = 667674063382677 × 233608 − 1, found by Peter Kaiser.

The constant representing the sum of the reciprocals of all prime quadruplets, Brun's constant for prime quadruplets, denoted by B4, is the sum of the reciprocals of all prime quadruplets:

with value:

B4 = 0.87058 83800 ± 0.00000 00005.

This constant should not be confused with the Brun's constant for cousin primes, prime pairs of the form (p, p + 4), which is also written as B4.

The prime quadruplet {11, 13, 17, 19} is alleged to appear on the Ishango bone although this is disputed.

Excluding the first prime quadruplet, the shortest possible distance between two quadruplets {p, p + 2, p + 6, p + 8} and {q, q + 2, q + 6, q + 8} is q - p = 30. The first occurrences of this are for p = 1006301, 2594951, 3919211, 9600551, 10531061, ... (OEISA059925).

The Skewes number for prime quadruplets {p, p + 2, p + 6, p + 8} is 1172531 (Tóth (2019)).

Prime quintuplets

If {p, p + 2, p + 6, p + 8} is a prime quadruplet and p − 4 or p + 12 is also prime, then the five primes form a prime quintuplet which is the closest admissible constellation of five primes. The first few prime quintuplets with p + 12 are:

{5, 7, 11, 13, 17}, {11, 13, 17, 19, 23}, {101, 103, 107, 109, 113}, {1481, 1483, 1487, 1489, 1493}, {16061, 16063, 16067, 16069, 16073}, {19421, 19423, 19427, 19429, 19433}, {21011, 21013, 21017, 21019, 21023}, {22271, 22273, 22277, 22279, 22283}, {43781, 43783, 43787, 43789, 43793}, {55331, 55333, 55337, 55339, 55343} OEISA022006.

The first prime quintuplets with p − 4 are:

{7, 11, 13, 17, 19}, {97, 101, 103, 107, 109}, {1867, 1871, 1873, 1877, 1879}, {3457, 3461, 3463, 3467, 3469}, {5647, 5651, 5653, 5657, 5659}, {15727, 15731, 15733, 15737, 15739}, {16057, 16061, 16063, 16067, 16069}, {19417, 19421, 19423, 19427, 19429}, {43777, 43781, 43783, 43787, 43789}, {79687, 79691, 79693, 79697, 79699}, {88807, 88811, 88813, 88817, 88819} ... OEISA022007.

A prime quintuplet contains two close pairs of twin primes, a prime quadruplet, and three overlapping prime triplets.

It is not known if there are infinitely many prime quintuplets. Once again, proving the twin prime conjecture might not necessarily prove that there are also infinitely many prime quintuplets. Also, proving that there are infinitely many prime quadruplets might not necessarily prove that there are infinitely many prime quintuplets.

The Skewes number for prime quintuplets {p, p + 2, p + 6, p + 8, p + 12} is 21432401 (Tóth (2019)).

Prime sextuplets

If both p − 4 and p + 12 are prime then it becomes a prime sextuplet. The first few:

{7, 11, 13, 17, 19, 23}, {97, 101, 103, 107, 109, 113}, {16057, 16061, 16063, 16067, 16069, 16073}, {19417, 19421, 19423, 19427, 19429, 19433}, {43777, 43781, 43783, 43787, 43789, 43793} OEISA022008

Some sources also call {5, 7, 11, 13, 17, 19} a prime sextuplet. Our definition, all cases of primes {p − 4, p, p + 2, p + 6, p + 8, p + 12}, follows from defining a prime sextuplet as the closest admissible constellation of six primes.

A prime sextuplet contains two close pairs of twin primes, a prime quadruplet, four overlapping prime triplets, and two overlapping prime quintuplets.

All prime sextuplets except {7, 11, 13, 17, 19, 23} are of the form for some integer n. (This structure is necessary to ensure that none of the six primes is divisible by 2, 3, 5 or 7).

It is not known if there are infinitely many prime sextuplets. Once again, proving the twin prime conjecture might not necessarily prove that there are also infinitely many prime sextuplets. Also, proving that there are infinitely many prime quintuplets might not necessarily prove that there are infinitely many prime sextuplets.

The Skewes number for the tuplet {p, p + 4, p + 6, p + 10, p + 12, p + 16} is 251331775687 (Tóth (2019)).

Prime k-tuples

Prime quadruplets, quintuplets, and sextuplets are examples of prime constellations, and prime constellations are in turn examples of prime k-tuples. A prime constellation is a grouping of k primes, with minimum prime p and maximum prime p + n, meeting the following two conditions:

  • Not all residues modulo q are represented for any prime q
  • For any given k, the value of n is the minimum possible

More generally, a prime k-tuple occurs if the first condition but not necessarily the second condition is met.

References

  1. ^ Weisstein, Eric W. "Prime Quadruplet". MathWorld. Retrieved on 2007-06-15.
  2. ^ The Top Twenty: Quadruplet at The Prime Pages. Retrieved on 2019-02-28.

Read other articles:

1952 United States Supreme Court caseYoungstown Sheet & Tube Co. v. SawyerSupreme Court of the United StatesArgued May 12–13, 1952Decided June 2, 1952Full case nameYoungstown Sheet & Tube Company, et al. v. Charles Sawyer, Secretary of CommerceCitations343 U.S. 579 (more)72 S. Ct. 863; 96 L. Ed. 1153; 1952 U.S. LEXIS 2625; 21 Lab. Cas. (CCH) ¶ 67,008; 1952 Trade Cas. (CCH) ¶ 67,293; 62 Ohio L. Abs. 417; 47 Ohio Op. 430; 26 A.L.R.2d 1378; 30 L.R.R.M. 2172Case historyPriorInjunction...

 

First-level administrative divisions Regions of CameroonRégions du Cameroun (French)CategoryUnitary StateLocationRepublic of CameroonNumber10GovernmentSemi-Autonomous Region governmentSubdivisionsDepartment The Republic of Cameroon is divided into ten regions. In 2008, the President of the Republic of Cameroon, President Paul Biya signed decrees abolishing provinces and replacing them with regions. Hence, all of the country's ten provinces are now known as regions. Most of these provinces we...

 

Rodolfo I el Tartamudo Duque de Alta Baviera Los electores en la elección del rey en 1308; Pedro de Maguncia, Balduino de Luxemburgo y Rodolfo I (Representación de 1341)Reinado 2 de febrero de 1294 – 1317Predecesor Luis II, duque de BavieraSucesor Luis IV de Baviera Otros títulos Conde palatino del Rin 1294 – 1317 Predecesor Luis II, duque de Baviera Sucesor Luis IV de Baviera Información personalNacimiento 4 de octubre de 1274Basilea, principado-arzobispado de BasileaFallecimiento 12...

Трезор Мпуту Особисті дані Повне ім'я Трезор Мпуту Мабі Народження 10 грудня 1985(1985-12-10) (37 років)   Кіншаса, Демократична Республіка Конго Зріст 174 см Громадянство  ДР Конго Позиція півзахисник Інформація про клуб Поточний клуб «ТП Мазембе» Професіональні клуб...

 

白山丸 白山丸基本情報船種 貨客船クラス H型貨客船船籍 大日本帝国所有者 三菱合資会社日本郵船運用者 日本郵船 大日本帝国海軍建造所 三菱造船長崎造船所母港 東京港/東京都姉妹船 箱根丸榛名丸筥崎丸信号符字 SNCN→JDXDIMO番号 29444(※船舶番号)建造期間 599日就航期間 7,564日経歴起工 1922年1月30日[1]進水 1923年5月19日[1]竣工 1923年9月20日除籍 1944年7月10

 

谷歌金山词霸谷歌金山词霸的用户界面谷歌金山词霸的用户界面開發者Google、金山软件操作系统Windows 2000, XP, Vista类型翻译软件许可协议金山软件最终用户许可协议(EULA) 谷歌金山词霸是一款基于互联网查询的翻译软件。它是由谷歌与金山软件在原有金山词霸软件的基础上合作开发的,于2008年5月8日发布第一个版本[1]。支持简体中文、日语和英语的互译,可实现桌面取

主要地方道 福島県道27号 塙大津港線茨城県道27号 塙大津港線主要地方道 塙大津港線 制定年 1959年10月14日 起点 福島県東白川郡塙町【北緯36度57分26.3秒 東経140度24分36.6秒 / 北緯36.957306度 東経140.410167度 / 36.957306; 140.410167 (県道27号起点)】 終点 茨城県北茨城市【北緯36度49分41.7秒 東経140度47分38.8秒 / 北緯36.828250度 東経140.794111度 / 36...

 

تحتاج هذه المقالة كاملةً أو أجزاءً منها إلى تدقيق لغوي أو نحوي. فضلًا ساهم في تحسينها من خلال الصيانة اللغوية والنحوية المناسبة. (فبراير 2019)المسيح بين بطرس وبولس، القرن الرابع. معظم العلماء الذين يدرسون يسوع التاريخي والمسيحية المبكرة يعتقدون أن الأناجيل القانونية وحياة يس

 

American politician (1924–2007) For other people named Henry Hyde, see Henry Hyde (disambiguation). Henry HydeMember of the U.S. House of Representativesfrom Illinois's 6th districtIn officeJanuary 3, 1975 – January 3, 2007Preceded byHarold R. CollierSucceeded byPeter RoskamChair of the House Foreign Affairs CommitteeIn officeJanuary 3, 2001 – January 3, 2007Preceded byBenjamin GilmanSucceeded byTom LantosChair of the House Judiciary CommitteeIn officeJanua...

1911 portrait of Kristian Prestrud who named the nunataks and erected a cairn at the site The Scott Nunataks are a group of conspicuous nunataks lying about 18 km east of the Richter Glacier and forming the northern end of the Alexandra Mountains in King Edward VII Land, Antarctica. History The formation was discovered in 1902 by the British National Antarctic Expedition under Captain Robert Falcon Scott. It was named after Scott by Lieutenant Kristian Prestrud, leader of the Eastern Sle...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sincan railway station – news · newspapers · books · scholar · JSTOR (June 2023) (Learn how and when to remove this template message) SincanLooking at the high-speed train platform from the commuter train platform.General informationLocationAtatürk Cd. 40, Ata...

 

2007 American filmAmerican PastimeDVD coverDirected byDesmond NakanoWritten byDesmond NakanoTony KaydenProduced byTom GoraiArata MatsushimaBarry RosenbushDavid SkinnerTerry SpazekKerry Yo NakagawaStarringGary ColeAaron YooJon GriesMasatoshi NakamuraJudy OnggCinematographyMatthew WilliamsEdited byMark YoshikawaMusic byJoseph ConlanRelease date 2007 (2007) Running time105 minutesCountryUnited StatesLanguageEnglish American Pastime is a 2007 fictional film set in the Topaz War Relocation Ce...

Bridge in Padua, ItalyPonte MolinoSide view. To the left begins the old town which is entered by the Porta e Ponte Molino.Coordinates45°24′42″N 11°52′26″E / 45.411745°N 11.873753°E / 45.411745; 11.873753CarriesVia DanteCrossesBacchiglioneLocalePadua, ItalyCharacteristicsDesignSegmental arch bridgeTotal length50.54 mWidth9.21 mLongest span11.47 mNo. of spans5HistoryConstruction end1st century BCLocation The Ponte Molino is a Roman bridge across the Bacchigli...

 

County in Wisconsin, United States County in WisconsinWalworth CountyCountyWalworth County CourthouseLocation within the U.S. state of WisconsinWisconsin's location within the U.S.Coordinates: 42°40′N 88°32′W / 42.67°N 88.54°W / 42.67; -88.54Country United StatesState WisconsinFounded1839Named forReuben H. Walworth[1]SeatElkhornLargest cityWhitewaterArea • Total577 sq mi (1,490 km2) • Land555 sq ...

 

Sports seasonNB I 2014–15LeagueNemzeti Bajnokság ISportvolleyballDuration27 September 2014 – 29 March 2015 (regular season)5 April 2015 – 7 May 2015 (playoffs)Number of teams12SummaryNB I seasons← 2013–142015–16 → The 2014–15 Nemzeti Bajnokság I is the 70th season of the Nemzeti Bajnokság I, Hungary's premier Volleyball league. Team information DunaferrSümegMAFCDágSzolnokVegyészPEACGyőrDEACPénzügyőrKaposvárKecskemétclass=notpageimage| Location of teams in...

Australian politician The HonourableAndrew Inglis ClarkJudge of the Tasmanian Supreme CourtIn office1 June 1898 – 14 November 1907Serving with John McIntyreMonarchsVictoriaEdward VIIPremierEdward BraddonElliott LewisWilliam PropstingJohn EvansGovernorJenico PrestonArthur HavelockGerald StricklandChief JusticeJohn Stokell DoddsPreceded byRobert Patten AdamsSucceeded byHerbert NichollsMember of the Federal Council of AustralasiaAppointedIn office3 January 1888 – 1 ...

 

Psychology subdisciplines Part of a series onPsychology Outline History Subfields Basic psychology Abnormal Affective neuroscience Affective science Behavioral genetics Behavioral neuroscience Behaviorism Cognitive/Cognitivism Cognitive neuroscience Social Comparative Cross-cultural Cultural Developmental Differential Ecological Evolutionary Experimental Gestalt Intelligence Mathematical Moral Neuropsychology Perception Personality Positive Psycholinguistics Psychophysiology Quantitative Soci...

 

Fort in India Diu FortressPart of DiuDiu, Dadra and Nagar Haveli and Daman and Diu, India Gate of the Diu FortressMap of Diu, 1729 (G. Child Sculpt., engraved by G. Child)Diu FortressCoordinates20°42′50″N 70°59′46″E / 20.714°N 70.996°E / 20.714; 70.996TypeFortSite informationOwnerGovernment of IndiaControlled by Portugal (16th century–1961) India (1961–present)ConditionIntact with partial ruinsSite historyBuilt16th centuryBuilt byPor...

Стой и пой о Замбии, гордой и свободнойStand and Sing of Zambia, Proud and Free Автор слов Коллективное авторство, 1964 Композитор Енох Сонтонга, 1897 Страна  Замбия Утверждён 1964 году Стой и пой о Замбии, гордой и свободной (англ. Stand and Sing of Zambia, Proud and Free, бемба Lumbanyeni Zambia) — государственный...

 

Feminist criticism This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (September 2016) Feminist art criticism emerged in the 1970s from the wider feminist movement as the critical examination of both visual representations of women in art and art produced by women.[1] It continues to be a major field of art criticism. Emergence Linda Nochlin's...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!