Prime k-tuple

In number theory, a prime k-tuple is a finite collection of values representing a repeatable pattern of differences between prime numbers. For a k-tuple (a, b, …), the positions where the k-tuple matches a pattern in the prime numbers are given by the set of integers n such that all of the values (n + a, n + b, …) are prime. Typically the first value in the k-tuple is 0 and the rest are distinct positive even numbers.[1]

Named patterns

Several of the shortest k-tuples are known by other common names:

(0, 2) twin primes
(0, 4) cousin primes
(0, 6) sexy primes
(0, 2, 6), (0, 4, 6) prime triplets
(0, 6, 12) sexy prime triplets
(0, 2, 6, 8) prime quadruplets, prime decade
(0, 6, 12, 18) sexy prime quadruplets
(0, 2, 6, 8, 12), (0, 4, 6, 10, 12) prime quintuplets
(0, 4, 6, 10, 12, 16) prime sextuplets

OEIS sequence OEISA257124 covers 7-tuples (prime septuplets) and contains an overview of related sequences, e.g. the three sequences corresponding to the three admissible 8-tuples (prime octuplets), and the union of all 8-tuples. The first term in these sequences corresponds to the first prime in the smallest prime constellation shown below.

Admissibility

In order for a k-tuple to have infinitely many positions at which all of its values are prime, there cannot exist a prime p such that the tuple includes every different possible value modulo p. If such a prime p existed, then no matter which value of n was chosen, one of the values formed by adding n to the tuple would be divisible by p, so the only possible placements would have to include p itself, and there are at most k of those. For example, the numbers in a k-tuple cannot take on all three values 0, 1, and 2 modulo 3; otherwise the resulting numbers would always include a multiple of 3 and therefore could not all be prime unless one of the numbers is 3 itself.

A k-tuple that includes every possible residue modulo p is said to be inadmissible modulo p. It should be obvious that this is only possible when kp. A tuple which is not inadmissible modulo any prime is called admissible.

It is conjectured that every admissible k-tuple matches infinitely many positions in the sequence of prime numbers. However, there is no tuple for which this has been proven except the trivial 1-tuple (0). In that case, the conjecture is equivalent to the statement that there are infinitely many primes. Nevertheless, Yitang Zhang proved in 2013 that there exists at least one 2-tuple which matches infinitely many positions; subsequent work showed that such a 2-tuple exists with values differing by 246 or less that matches infinitely many positions.[2]

Positions matched by inadmissible patterns

Although (0, 2, 4) is inadmissible modulo 3, it does produce the single set of primes, (3, 5, 7).

Because 3 is the first odd prime, a non-trivial (k ≥ 1) k-tuple matching the prime 3 can only match in one position. If the tuple begins (0, 1, ...) (i.e. is inadmissible modulo 2) then it can only match (2, 3, ...); if the tuple contains only even numbers, it can only match (3, ...).

Inadmissible k-tuples can have more than one all-prime solution if they are admissible modulo 2 and 3, and inadmissible modulo a larger prime p ≥ 5. This of course implies that there must be at least five numbers in the tuple. The shortest inadmissible tuple with more than one solution is the 5-tuple (0, 2, 8, 14, 26), which has two solutions: (3, 5, 11, 17, 29) and (5, 7, 13, 19, 31), where all values mod 5 are included in both cases. Examples with three or more solutions also exist.[3]

Prime constellations

The diameter of a k-tuple is the difference of its largest and smallest elements. An admissible prime k-tuple with the smallest possible diameter d (among all admissible k-tuples) is a prime constellation. For all nk this will always produce consecutive primes.[4] (Recall that all n are integers for which the values (n + a, n + b, …) are prime.)

This means that, for large n:

where pn is the nth prime number.

The first few prime constellations are:

k d Constellation smallest[5]
2 2 (0, 2) (3, 5)
3 6 (0, 2, 6)
(0, 4, 6)
(5, 7, 11)
(7, 11, 13)
4 8 (0, 2, 6, 8) (5, 7, 11, 13)
5 12 (0, 2, 6, 8, 12)
(0, 4, 6, 10, 12)
(5, 7, 11, 13, 17)
(7, 11, 13, 17, 19)
6 16 (0, 4, 6, 10, 12, 16) (7, 11, 13, 17, 19, 23)
7 20 (0, 2, 6, 8, 12, 18, 20)
(0, 2, 8, 12, 14, 18, 20)
(11, 13, 17, 19, 23, 29, 31)
(5639, 5641, 5647, 5651, 5653, 5657, 5659)
8 26 (0, 2, 6, 8, 12, 18, 20, 26)
(0, 2, 6, 12, 14, 20, 24, 26)
(0, 6, 8, 14, 18, 20, 24, 26)
(11, 13, 17, 19, 23, 29, 31, 37)
(17, 19, 23, 29, 31, 37, 41, 43)
(88793, 88799, 88801, 88807, 88811, 88813, 88817, 88819)
9 30 (0, 2, 6, 8, 12, 18, 20, 26, 30)
(0, 4, 6, 10, 16, 18, 24, 28, 30)
(0, 2, 6, 12, 14, 20, 24, 26, 30)
(0, 4, 10, 12, 18, 22, 24, 28, 30)
(11, 13, 17, 19, 23, 29, 31, 37, 41)
(13, 17, 19, 23, 29, 31, 37, 41, 43)
(17, 19, 23, 29, 31, 37, 41, 43, 47)
(88789, 88793, 88799, 88801, 88807, 88811, 88813, 88817, 88819)

The diameter d as a function of k is sequence A008407 in the OEIS.

A prime constellation is sometimes referred to as a prime k-tuplet, but some authors reserve that term for instances that are not part of longer k-tuplets.

The first Hardy–Littlewood conjecture predicts that the asymptotic frequency of any prime constellation can be calculated. While the conjecture is unproven it is considered likely to be true. If that is the case, it implies that the second Hardy–Littlewood conjecture, in contrast, is false.

Prime arithmetic progressions

A prime k-tuple of the form (0, n, 2n, 3n, …, (k − 1)n) is said to be a prime arithmetic progression. In order for such a k-tuple to meet the admissibility test, n must be a multiple of the primorial of k.[6]

Skewes numbers

The Skewes numbers for prime k-tuples are an extension of the definition of Skewes' number to prime k-tuples based on the first Hardy–Littlewood conjecture (Tóth (2019)). Let denote a prime k-tuple, the number of primes p below x such that are all prime, let and let denote its Hardy–Littlewood constant (see first Hardy–Littlewood conjecture). Then the first prime p that violates the Hardy–Littlewood inequality for the k-tuple P, i.e., such that

(if such a prime exists) is the Skewes number for P.

The table below shows the currently known Skewes numbers for prime k-tuples:

Prime k-tuple Skewes number Found by
1369391 Wolf (2011)
5206837 Tóth (2019)
87613571 Tóth (2019)
337867 Tóth (2019)
1172531 Tóth (2019)
827929093 Tóth (2019)
21432401 Tóth (2019)
216646267 Tóth (2019)
251331775687 Tóth (2019)
7572964186421 Pfoertner (2020)
214159878489239 Pfoertner (2020)
1203255673037261 Pfoertner / Luhn (2021)
523250002674163757 Luhn / Pfoertner (2021)
750247439134737983 Pfoertner / Luhn (2021)

The Skewes number (if it exists) for sexy primes is still unknown.

References

  1. ^ Chris Caldwell, "The Prime Glossary: k-tuple" at The Prime Pages.
  2. ^ "Bounded gaps between primes". PolyMath. Retrieved 2019-04-22.[dead link]
  3. ^ Fernando, Ravi (7 March 2015). "How many distinct translates of a (non-admissible) set H can consist entirely of primes?". Mathematics StackExchange.
  4. ^ Weisstein, Eric W. "Prime Constellation". MathWorld.
  5. ^ Norman Luhn, "The big database of 'Smallest Prime k-tuplets' ".
  6. ^ Weisstein, Eric W. "Prime Arithmetic Progression". MathWorld.

Read other articles:

Війська радіоелектронної боротьби ЗСУНа службі 1992 — по т.ч.Країна  УкраїнаНалежність  Збройні силиТип Війська РЕБЗнаки розрізненняЕмблема військрадіоелектронної боротьби (2007—2016) Медіафайли на Вікісховищі Війська́ радіоелектро́нної боротьби́, Війська РЕБ ...

 

 

سيونج وو ريو   معلومات شخصية الميلاد 17 ديسمبر 1993 (العمر 29 سنة)بوسان ، كوريا الجنوبية الطول 1.72 م (5 قدم 8 بوصة) مركز اللعب مهاجم الجنسية كوريا الجنوبية  المدرسة الأم جامعة تشونغ انغ  معلومات النادي النادي الحالي سوون سامسونغ بلووينغز الرقم 30 مسيرة الشباب سنوات فر

 

 

منتخب النمسا لكرة القدم (بالألمانية: österreichische Fußballnationalmannschaft)‏  معلومات عامة بلد الرياضة  النمسا الفئة كرة القدم للرجال  رمز الفيفا AUT  الاتحاد الاتحاد النمساوي لكرة القدم كونفدرالية يويفا (أوروبا) الملعب الرئيسي ملعب إرنست هابل الموقع الرسمي الموقع الرسمي  الط

ساندرا ميننيرت معلومات شخصية الاسم الكامل ساندرا ميننيرت الميلاد 7 أبريل 1973 (العمر 50 سنة)جيردن الطول 1.73 م (5 قدم 8 بوصة) مركز اللعب مدافعة الجنسية ألمانيا معلومات النادي النادي الحالي SC 07 Bad Neuenahr [الإنجليزية]‏ سنوات فريق م. (هـ.) 1990–1999 إف إس في فرانكفورت 1999–2000 Sportfre...

 

 

Astronomical catalog Washington Double Star CatalogAlternative namesWDS[edit on Wikidata] The distribution of the objects of the catalog over the firmament is fairly even. The Washington Double Star Catalog, or WDS, is a catalog of double stars, maintained at the United States Naval Observatory. The catalog contains positions, magnitudes, proper motions and spectral types and has entries for (as of June 2017) 141,743 pairs of double stars. The catalog also includes multiple stars. In...

 

 

مركز التجارة الدولي مركز التجارة الدولي‌ الاختصار ITC البلد سويسرا  المقر الرئيسي جنيف،  سويسرا تاريخ التأسيس 1964؛ منذ 59 سنوات (1964) النوع منظمة حكومية دولية منطقة الخدمة في جميع أنحاء العالم الرئيس التنفيذي باميلا كوك هاميلتون  [لغات أخرى]‏ [1] منذ يولي

Contoh memorandum dari mantan Presiden AS, Donald Trump. Memo atau memorandum adalah surat yang digunakan oleh pimpinan untuk menyampaikan suatu pesan-pesan singkat yang berupa pemberitahuan, permintaan atau hal-hal lain dalam suatu organisasi. Komponen penting dalam sebuah memo mencakup kepada siapa memo tersebut ditujukan, dari siapa, tentang hal apa, tanggal pembuatan atau penulisan memo, penyampaian memo berasal dan pimpinan kepada pimpinan yang lain (sederajat) atau dari pimpinan kepada ...

 

 

غوستافو فيغيروا   معلومات شخصية الميلاد 30 أغسطس 1978 (العمر 45 سنة)سانتا آنا  الطول 1.75 م (5 قدم 9 بوصة) مركز اللعب مهاجم  الجنسية الولايات المتحدة  المسيرة الاحترافية1 سنوات فريق م. (هـ.) 1998–1999 إل. دي. يو. كيتو 12 (0) 2000 أوكاس 43 (9) 2001 إل. دي. يو. كيتو 17 (3) 2001–2002 ديبورتيفو ...

 

 

Train station in Davis, California, US Davis, CAPassengers wait at Davis station in November 2017General informationLocation840 Second StreetDavis, CaliforniaUnited StatesCoordinates38°32′37″N 121°44′12″W / 38.54361°N 121.73667°W / 38.54361; -121.73667Owned byCity of DavisLine(s)UP Martinez SubdivisionCFNR West Valley Line[1]Platforms1 side platform, 1 island platformTracks2Connections Amtrak Thruway to Stockton–Downtown and Redding[2] Uni...

1959 British filmKillers of KilimanjaroTheatrical film posterDirected byRichard ThorpeScreenplay byJohn GillingBased onstory by Cyril Hume and Richard Maibaumfrom book African Bush Adventures by J. Hunter and Daniel P. MannixProduced byJohn R SloaneexecutiveIrving AllenAlbert R. BroccoliStarringRobert TaylorAnthony NewleyCinematographyTed MooreEdited byGeoffrey FootMusic byWilliam AlwynProductioncompanyWarwick FilmsDistributed byColumbia PicturesRelease date 1959 (1959) Running time91 mi...

 

 

Pauline LordPauline Lord, 1921Lahir(1890-08-13)13 Agustus 1890Hanford, California, ASMeninggal11 Oktober 1950(1950-10-11) (umur 60)Alamogordo, New Mexico, ASPekerjaanAktris film, dan teaterTahun aktif1903–1946Suami/istriOwen B. Winters (1929–1931) Pauline Lord (13 Agustus 1890 – 11 Oktober 1950) adalah seorang aktris panggung dan film asal Amerika. Biografi Lord lahir di Hanford, California, dari pasangan Edward Lord dan Sara Foster. Ketika keluarganya pindah ke ...

 

 

Bến Cầu Thị trấn Thị trấn Bến Cầu Một góc thị trấn Bến CầuHành chínhQuốc gia Việt NamVùngĐông Nam BộTỉnhTây NinhHuyệnBến CầuTrụ sở UBNDĐường Bến Đình, khu phố 1Thành lập1999[1]Loại đô thịLoại VĐịa lýTọa độ: 11°7′6″B 106°10′17″Đ / 11,11833°B 106,17139°Đ / 11.11833; 106.17139 Bến Cầu Vị trí thị trấn Bến Cầu trên bản đồ Việt Nam Diện tích6,58 km...

Dodekahedron stilasi kecil dan besar dalam sebuah buku karya Johannes Kepler, Harmonices Mundi. Daftar bentuk geometri adalah sebuah daftar yang mencakup topik-topik yang ada di matematika, seperti daftar bentuk di geometri. Selain itu, daftar ini juga mencakup topik yang berkaitan, seperti bentuk-bentuk yang digunakan dengan menggambar atau menggunakan alat pengajar. Matematika Daftar bentuk matematika Daftar bentuk geometri dimensi dua Daftar topik segitiga Daftar topik lingkaran Daftar kur...

 

 

Not to be confused with Nelson Mandela Square. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Nelson Mandela Park – news · newspapers · books · scholar · JSTOR (November 2009) (Learn how and when to remove this template message) Nelson Mandela ParkA sign denoting the entrance to the park.TypeUrban parkLocat...

 

 

Corporatist students' union in Spain Spanish University UnionSindicato Español UniversitarioFormation21 November 1933FounderAgustín Aznar, Manuel Valdés Larrañaga, José Miguel Guitarte, Heliodoro Fernández Canepa, Matías MonteroDissolved5 April 1965TypeStudent organizationPurposeStudent activismHeadquartersMadridLocation SpainRegion served NationalMembership 500 (1933)2,300 (1934)9,700 (1936)46,569 (1940)Official language Spanish The Sindicato Español Universitario (Spanish Unive...

2023 royal wedding Wedding of Hussein, Crown Prince of Jordan, and Rajwa Al SaifA video showing the procession of Crown Prince Hussein and Princess Rajwa following their weddingDate1 June 2023VenueZahran PalaceLocationAmman, JordanParticipantsHussein, Crown Prince of JordanRajwa Al Saif The wedding of Al Hussein bin Abdullah, Crown Prince of Jordan, and Rajwa Al Saif took place at Zahran Palace in Amman, Jordan on 1 June 2023. Hussein is the eldest son of King Abdullah II bin Al Hussein and Q...

 

 

2010 British filmNanny McPhee and the Big BangUK theatrical release posterDirected bySusanna WhiteWritten byEmma ThompsonBased onNurse Matildaby Christianna BrandProduced byTim BevanEric FellnerLindsay DoranStarring Emma Thompson Maggie Gyllenhaal Asa Butterfield Rhys Ifans Ralph Fiennes Ewan McGregor Maggie Smith CinematographyMike EleyEdited bySim Evan-JonesMusic byJames Newton HowardProductioncompanies StudioCanal Relativity Media Working Title Films Three Strange Angels Distributed byUniv...

 

 

Metro station in Taipei, Taiwan Shipai石牌Taipei metro stationExteriorChinese nameChinese石牌Literal meaningStone tabletTranscriptionsStandard MandarinHanyu PinyinShípáiBopomofoㄕˊ ㄆㄞˊWade–GilesShih²-p'ai²HakkaPha̍k-fa-sṳSa̍k-phàiSouthern MinTâi-lôTsio̍h-pâi-á (石牌仔) General informationLocation200 Sec 1 Shipai RdBeitou, TaipeiTaiwanCoordinates25°06′52″N 121°30′56″E / 25.1144°N 121.5156°E / 25.1144; 121.5156ConstructionStructu...

Holiday special on Netflix Robin RobinPosterDirected byDan OjariMikey PleaseWritten byDan OjariMikey PleaseSam MorrisonProduced byHelen ArgoDanny GallagherStarringBronte CarmichaelRichard E. GrantGillian AndersonAdeel AkhtarCinematographyDave Alex RiddettEdited byChris MorrellMusic byBen PleaseBeth PorterProductioncompanyAardman AnimationsDistributed byNetflixRelease date 24 November 2021 (2021-11-24) Running time32 minutesCountriesUnited KingdomUnited StatesLanguageEnglish Rob...

 

 

American media franchise BladeThe Blade Trilogy DVD box setDirected by Stephen Norrington (Blade) Guillermo del Toro (Blade II) David S. Goyer (Blade: Trinity) Written by David S. Goyer Michael Starrbury Based onBladeby Marv WolfmanGene ColanStarring Wesley Snipes Music by Mark Isham (Blade) Marco Beltrami (Blade II) Ramin DjawadiThe RZA (Blade: Trinity) Distributed byNew Line CinemaRelease date1998–2006CountryUnited StatesLanguageEnglishBudget$164 million[1]Box office$417...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!