Pauling's rules

Pauling's rules are five rules published by Linus Pauling in 1929 for predicting and rationalizing the crystal structures of ionic compounds.[1][2]

First rule: the radius ratio rule

For typical ionic solids, the cations are smaller than the anions, and each cation is surrounded by coordinated anions which form a polyhedron. The sum of the ionic radii determines the cation-anion distance, while the cation-anion radius ratio (or ) determines the coordination number (C.N.) of the cation, as well as the shape of the coordinated polyhedron of anions.[2]: 524 [3]

For the coordination numbers and corresponding polyhedra in the table below, Pauling mathematically derived the minimum radius ratio for which the cation is in contact with the given number of anions (considering the ions as rigid spheres). If the cation is smaller, it will not be in contact with the anions which results in instability leading to a lower coordination number.

Critical Radius Ratio. This diagram is for coordination number six: 4 anions in the plane shown, 1 above the plane and 1 below. The stability limit is at rC/rA = 0.414
Polyhedron and minimum radius ratio for each coordination number
C.N. Polyhedron Radius ratio
3 triangular 0.155
4 tetrahedron 0.225
6 octahedron 0.414
7 capped octahedron 0.592
8 square antiprism (anticube) 0.645
8 cube 0.732
9 triaugmented triangular prism 0.732
12 cuboctahedron 1.00

The three diagrams at right correspond to octahedral coordination with a coordination number of six: four anions in the plane of the diagrams, and two (not shown) above and below this plane. The central diagram shows the minimal radius ratio. The cation and any two anions form a right triangle, with , or . Then . Similar geometrical proofs yield the minimum radius ratios for the highly symmetrical cases C.N. = 3, 4 and 8.[4]

The NaCl crystal structure. Each Na atom has six nearest neighbors, with octahedral geometry.
The CsCl unit cell. Each Cs atom has eight nearest neighbors, with cubic geometry.

For C.N. = 6 and a radius ratio greater than the minimum, the crystal is more stable since the cation is still in contact with six anions, but the anions are further from each other so that their mutual repulsion is reduced. An octahedron may then form with a radius ratio greater than or equal to 0.414, but as the ratio rises above 0.732, a cubic geometry becomes more stable. This explains why Na+ in NaCl with a radius ratio of 0.55 has octahedral coordination, whereas Cs+ in CsCl with a radius ratio of 0.93 has cubic coordination.[5]

If the radius ratio is less than the minimum, two anions will tend to depart and the remaining four will rearrange into a tetrahedral geometry where they are all in contact with the cation.

The radius ratio rules are a first approximation which have some success in predicting coordination numbers, but many exceptions do exist.[3] In a set of over 5000 oxides, only 66% of coordination environments agree with Pauling's first rule. Oxides formed with alkali or alkali-earth metal cations that contain multiple cation coordinations are common deviations from this rule.[6]

Second rule: the electrostatic valence rule

For a given cation, Pauling defined[2] the electrostatic bond strength to each coordinated anion as , where z is the cation charge and ν is the cation coordination number. A stable ionic structure is arranged to preserve local electroneutrality, so that the sum of the strengths of the electrostatic bonds to an anion equals the charge on that anion.

where is the anion charge and the summation is over the adjacent cations. For simple solids, the are equal for all cations coordinated to a given anion, so that the anion coordination number is the anion charge divided by each electrostatic bond strength. Some examples are given in the table.

Cations with oxide O2− ion
Cation Radius ratio Cation C.N. Electrostatic
bond strength
Anion C.N.
Li+ 0.34 4 0.25 8
Mg2+ 0.47 6 0.33 6
Sc3+ 0.60 6 0.5 4

Pauling showed that this rule is useful in limiting the possible structures to consider for more complex crystals such as the aluminosilicate mineral orthoclase, KAlSi3O8, with three different cations.[2] However, from data analysis of oxides from the Inorganic Crystal Structure Database (ICSD), the result showed that only 20% of all oxygen atoms matched with the prediction from second rule (using a cutoff of 0.01).[6]

Third rule: sharing of polyhedron corners, edges and faces

The sharing of edges and particularly faces by two anion polyhedra decreases the stability of an ionic structure. Sharing of corners does not decrease stability as much, so (for example) octahedra may share corners with one another.[2]: 559 

The decrease in stability is due to the fact that sharing edges and faces places cations in closer proximity to each other, so that cation-cation electrostatic repulsion is increased. The effect is largest for cations with high charge and low C.N. (especially when r+/r- approaches the lower limit of the polyhedral stability). Generally, smaller elements fulfill the rule better.[6]

As one example, Pauling considered the three mineral forms of titanium dioxide, each with a coordination number of 6 for the Ti4+ cations. The most stable (and most abundant) form is rutile, in which the coordination octahedra are arranged so that each one shares only two edges (and no faces) with adjoining octahedra. The other two, less stable, forms are brookite and anatase, in which each octahedron shares three and four edges respectively with adjoining octahedra.[2]: 559 

Fourth rule: crystals containing different cations

Structure of olivine. M (Mg or Fe) = blue spheres, Si = pink tetrahedra, O = red spheres.

In a crystal containing different cations, those of high valency and small coordination number tend not to share polyhedron elements with one another.[2]: 561  This rule tends to increase the distance between highly charged cations, so as to reduce the electrostatic repulsion between them.

One of Pauling's examples is olivine, M2SiO4, where M is a mixture of Mg2+ at some sites and Fe2+ at others. The structure contains distinct SiO4 tetrahedra which do not share any oxygens (at corners, edges or faces) with each other. The lower-valence Mg2+ and Fe2+ cations are surrounded by polyhedra which do share oxygens.

Fifth rule: the rule of parsimony

The number of essentially different kinds of constituents in a crystal tends to be small.[2] The repeating units will tend to be identical because each atom in the structure is most stable in a specific environment. There may be two or three types of polyhedra, such as tetrahedra or octahedra, but there will not be many different types.

Limitation

In a study of 5000 oxides, only 13% of them satisfy all of the last 4 rules, indicating limited universality of Pauling's rules.[6]

See also

References

  1. ^ Pauling, Linus (1929). "The principles determining the structure of complex ionic crystals". J. Am. Chem. Soc. 51 (4): 1010–1026. doi:10.1021/ja01379a006.
  2. ^ a b c d e f g h Pauling, Linus (1960). The nature of the chemical bond and the structure of molecules and crystals; an introduction to modern structural chemistry (3rd ed.). Ithaca (NY): Cornell University Press. pp. 543–562. ISBN 0-8014-0333-2.
  3. ^ a b Housecroft, Catherine E.; Sharpe, Alan G. (2005). Inorganic chemistry (2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall. p. 145. ISBN 9780130399137.
  4. ^ Toofan, Jahansooz (February 1994). "A Simple Expression between Critical Radius Ratio and Coordination Number". Journal of Chemical Education. 71 (2): 147. doi:10.1021/ed071p147. Following the erratum, equations should read and , (where bond angle)
  5. ^ Petrucci, Ralph H.; Harwood, William S.; Herring, F. Geoffrey (2002). General chemistry: principles and modern applications (8th ed.). Upper Saddle River, NJ: Prentice Hall. p. 518. ISBN 0-13-014329-4.
  6. ^ a b c d George, Janine; Waroquiers, David; Di Stefano, Davide; Petretto, Guido; Rignanese, Gian‐Marco; Hautier, Geoffroy (2020-05-04). "The Limited Predictive Power of the Pauling Rules". Angewandte Chemie International Edition. 59 (19): 7569–7575. doi:10.1002/anie.202000829. ISSN 1433-7851. PMC 7217010. PMID 32065708.

Read other articles:

Евреи в Казахстане (каз. Қазақстандағы еврейлер) — группа населения, являющаяся этническим меньшинством страны. Содержание 1 История 1.1 Дореволюционная история 1.2 Довоенный период 1.3 Война и эвакуация 1.4 Послевоенное время 1.5 80-е годы — наши дни 2 Известные казахстанские ев

 

Pandit Bhimsen JoshiInformasi latar belakangNama lahirPandit Bimsen JoshiLahir(1922-02-04)4 Februari 1922Ron, Karnataka, IndiaMeninggal24 Januari 2011(2011-01-24) (umur 88)Pune, MaharashtraGenreMusik klasik HindustaniPekerjaanPenyanyi RaagTahun aktif1941–2000Situs webTanda tangan Pt. Bhimsen Joshi Bhimsen Gururaj Joshi (pengucapanⓘ);[1] 4 Februari 1922 – 24 Januari 2011) adalah seorang vokalis India dari Karnataka dalam tradisi klasik Hindustani. Ia dikenal karena bentuk me...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2018) روبن دوق معلومات شخصية الميلاد 13 مارس 1954 (69 سنة)  سانت كاثرينز  مواطنة كندا  الطول 1.65 متر  الحياة العملية المهنة ممثلة،  ومُدرسة،  وكاتبة سينا...

Canadian Anishinaabekwe artist (born 1960) Rebecca BelmoreRebecca Belmore performing at Nuit Blanche 2016 in the Art Gallery of OntarioBorn (1960-03-22) March 22, 1960 (age 63)Upsala, Ontario, CanadaNationalityLac Seul First Nation (Canadian)Known forinstallation artist, Performance artistAwardsGovernor General's Award 2013Websiterebeccabelmore.com Rebecca Belmore RCA D.F.A. (born March 22, 1960) is a Canadian interdisciplinary Anishinaabekwe artist who is notable for politically co...

 

Prix d'architecture contemporaine de l'Union européenne Les lauréats du prix et de la mention spéciale reçoivent respectivement 60 000 et 20 000 euros et une sculpture évoquant le pavillon de Mies van der Rohe à Barcelone. Description Récompense tous les deux ans des œuvres architecturales exemplaires Organisateur Commission européenneFondation Mies van der Rohe Pays  Union européenne Date de création 28 avril 1987 Dernier récipiendaire Lacaton & Vassal Architectes pour l...

 

Izalci Lucas Izalci LucasIzalci Lucas Senador pelo Distrito Federal Período 1º de fevereiro de 2019 até a atualidade Deputado Federal pelo Distrito Federal Período 29 de abril de 2008 até 1º de fevereiro de 2019 Deputado Distrital do Distrito Federal Período 1º de fevereiro de 2003 até 1º de fevereiro de 2007 Dados pessoais Nascimento 7 de abril de 1956 (67 anos) Araújos, MG Nacionalidade brasileiro Partido PSDB (1998-presente) Profissão Contador e Professor Izalci Lucas...

Kanselir agung (Tiongkok) Hanzi: 宰相 Alih aksara Mandarin - Hanyu Pinyin: Zǎixiàng - Wade-Giles: Tsai3-hsiang4 nama alternatif Hanzi: 丞相 Alih aksara Mandarin - Hanyu Pinyin: Chéngxiàng - Wade-Giles: Ch'eng2-hsiang4 Kanselir agung (宰相/丞相), sering juga diterjemahkan menjadi perdana menteri, penasihat kepala, kanselir, kepala dewan, kepala menteri, kanselir kekaisaran atau letnan kanselir, adalah pejabat eksekutif tertinggi dalam pemerintahan kekaisaran Tiongkok. Jabatan ini d...

 

Hans Krankl Informasi pribadiNama lengkap Johann KranklTanggal lahir 14 Februari 1953 (umur 70)Tempat lahir Wina, AustriaTinggi 1,82 m (5 ft 11+1⁄2 in)Posisi bermain StrikerKarier senior*Tahun Tim Tampil (Gol)1970–1978 Rapid Wien 205 (160)1971–1972 → Wiener AC (pinjaman) 26 (27)1978–1981 Barcelona 46 (34)1979–1980 → First Vienna (pinjaman) 17 (13)1981–1986 Rapid Wien 145 (107)1986–1988 Wiener AC 60 (40)1988 Kremser 5 (1)1989 Austria Salzburg 14 (10)To...

 

Artikel ini adalah bagian dari seri:Permainan video Pelantar Dingdong Konsol permainan Konsol video rumah Permainan elektronik Konsol genggam Permainan ponsel Permainan daring Permainan PC Linux Mac Genre Laga Berhantam Bertarung Arung pelantar Bertahan hidup Siluman Bertahan hidup horor Petualangan Bermain peran Bermain peran laga Bermain peran taktik Simulasi Konstruksi dan manajemen Simulasi kehidupan Olahraga Kendaraan Strategi Bertarung daring banyak pemain Strategi waktu nyata Taktik wa...

Not to be confused with Bank Rakyat Indonesia. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bank Rakyat – news · newspapers · books · scholar · JSTOR (July 2019) (Learn how and when to remove this template message) Bank Kerjasama Rakyat Malaysia BerhadTrade nameBank RakyatTypePublic limited companyIndustr...

 

HGCFull nameHOC Gazellen CombinatieNickname(s)De Gazellen (The Gazelles)Founded22 September 1906; 117 years ago (1906-09-22)Home groundDe Roggewoning, WassenaarLeagueMen's HoofdklasseWomen's Hoofdklasse2021–22Men: 4thWomen: 6thWebsiteClub website Home Away H.O.C. Gazellen-Combinatie, also known as HGC, is a Dutch professional field hockey club located in Wassenaar, South Holland on the border of The Hague. The club was founded on 22 September 1906.[1] The first tea...

 

Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari List of female Nobel laureates di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: p...

Untuk kegunaan lain, lihat Metis. 9 Metis PenemuanDitemukan olehAndrew GrahamTanggal penemuan25 April 1848PenamaanAsal namaMetisNama alternatif1974 QU2Kategori planet minorSabuk utamaKata sifat bahasa InggrisMetidianCiri-ciri orbit[1]Epos 14 Juli 2004(Kalender Julian 2453200,5)Aphelion400,548 Gm (2,678 SA)Perihelion313,556 Gm (2,096 SA)Sumbu semimayor357,052 Gm (2,387 SA)Eksentrisitas0,122Periode orbit1346,815 hr (3,69 a)Kecepatan orbit rata-rata19,2...

 

American composer Eric AllamanBackground informationBornSpringfield, MissouriGenresFilm score, musical theatre, balletOccupation(s)ComposerInstrument(s)PianoYears active1985–presentWebsitehttps://www.ericallaman.comMusical artist Eric Allaman is an American composer who has worked in film, television, theater and ballet. His career began when he co-composed the score to Ridley Scott's Legend with the German electronic group Tangerine Dream.[1] That opportunity led to Eric re-scoring...

 

حِسْمَى موقع تقريبي لصحراء حسمى الموقع البلد الأردن السعودية الإحداثيات 29°16′43″N 35°28′54″E / 29.278635°N 35.481684°E / 29.278635; 35.481684 الارتفاعات بيانات أخرى الأمطار ما بين 50-100 ملم. الموارد الطبيعية مياه جوفية المعالم وادي رم وجبل اللوز تعديل مصدري - تعديل   صحراء حِسْمَى ه...

Alaskan Mayoral Election 1987 Anchorage mayoral election ← 1984 October 12, 1987 (first round)[1]November 3, 1987 (runoff)[2] 1990 → Turnout52.46% (runoff)[2]   Candidate Tom Fink Dave Walsh H. A. Red Boucher First-round vote 15,666 18,200 12,346 First-round percentage 30.30% 35.20% 23.88% Second-round vote 30,962 23,214 Second-round percentage 57.15% 42.85%   Candidate Larry Baker First-round vote 3,342 First-round percentage 6.46% Mayo...

 

Đừng nhầm lẫn với Bộ trưởng Bộ Ngoại giao Hoa Kỳ. Quan hệ đảng phái hoặc cơ quan chính phủ tương tự của Bang vụ khanh hiện nhiệm Hoa Kỳ:  Bang vụ khanh đảng viên Dân Chủ  Bang vụ khanh đảng viên Cộng hoà  Bang vụ khanh độc lập  Bang vụ khanh đảng viên Cộng hoà hoặc Đảng Tân tiến bộ  Không thiết lập Bang vụ khanh Bang vụ khanh[1] (tiếng ...

 

Ancient city in southwest Asia Minor AndriakeἈνδριάκηAndriake Harbour areaShown within TurkeyLocationDemre, Antalya Province, TurkeyRegionLyciaCoordinates36°13′35″N 29°57′23″E / 36.22639°N 29.95639°E / 36.22639; 29.95639TypeAncient Settlement and port Andriake Plan Wikimedia Commons has media related to Andriake. Andriake or Andriaca (Ancient Greek: Ἀνδριάκη) was an ancient city and the port of the ancient town of Myra in Lycia. It is loca...

العلاقات الغامبية الكورية الشمالية غامبيا كوريا الشمالية   غامبيا   كوريا الشمالية تعديل مصدري - تعديل   العلاقات الغامبية الكورية الشمالية هي العلاقات الثنائية التي تجمع بين غامبيا وكوريا الشمالية.[1][2][3][4][5] مقارنة بين البلدين هذه مقارن...

 

Species of fly Rabdophaga rosariella Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Diptera Family: Cecidomyiidae Genus: Rabdophaga Species: R. rosariella Binomial name Rabdophaga rosariella(Kieffer, 1897) Rabdophaga rosariella is a species of gall midge which forms galls on sallows (Salix species). It was first described by Jean-Jacques Kieffer in 1897. Description The gall is a small rosette, most often in an axillary bud on sallo...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!