Right triangle

A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,

A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (14 turn or 90 degrees).

The side opposite to the right angle is called the hypotenuse (side in the figure). The sides adjacent to the right angle are called legs (or catheti, singular: cathetus). Side may be identified as the side adjacent to angle and opposite (or opposed to) angle while side is the side adjacent to angle and opposite angle

Every right triangle is half of a rectangle which has been divided along its diagonal. When the rectangle is a square, its right-triangular half is isosceles, with two congruent sides and two congruent angles. When the rectangle is not a square, its right-triangular half is scalene.

Every triangle whose base is the diameter of a circle and whose apex lies on the circle is a right triangle, with the right angle at the apex and the hypotenuse as the base; conversely, the circumcircle of any right triangle has the hypotenuse as its diameter. This is Thales' theorem.

The legs and hypotenuse of a right triangle satisfy the Pythagorean theorem: the sum of the areas of the squares on two legs is the area of the square on the hypotenuse, If the lengths of all three sides of a right triangle are integers, the triangle is called a Pythagorean triangle and its side lengths are collectively known as a Pythagorean triple.

The relations between the sides and angles of a right triangle provides one way of defining and understanding trigonometry, the study of the metrical relationships between lengths and angles.

Principal properties

Sides

The diagram for Euclid's proof of the Pythagorean theorem: each smaller square has area equal to the rectangle of corresponding color.

The three sides of a right triangle are related by the Pythagorean theorem, which in modern algebraic notation can be written

where is the length of the hypotenuse (side opposite the right angle), and and are the lengths of the legs (remaining two sides). Pythagorean triples are integer values of satisfying this equation. This theorem was proven in antiquity, and is proposition I.47 in Euclid's Elements: "In right-angled triangles the square on the side subtending the right angle is equal to the squares on the sides containing the right angle."

Area

As with any triangle, the area is equal to one half the base multiplied by the corresponding height. In a right triangle, if one leg is taken as the base then the other is height, so the area of a right triangle is one half the product of the two legs. As a formula the area is

where and are the legs of the triangle.

If the incircle is tangent to the hypotenuse at point then letting the semi-perimeter be we have and and the area is given by

This formula only applies to right triangles.[1]

Altitudes

Altitude f of a right triangle

If an altitude is drawn from the vertex with the right angle to the hypotenuse then the triangle is divided into two smaller triangles which are both similar to the original and therefore similar to each other. From this:

  • The altitude to the hypotenuse is the geometric mean (mean proportional) of the two segments of the hypotenuse.[2]: 243 
  • Each leg of the triangle is the mean proportional of the hypotenuse and the segment of the hypotenuse that is adjacent to the leg.

In equations,

(this is sometimes known as the right triangle altitude theorem)

where are as shown in the diagram.[3] Thus

Moreover, the altitude to the hypotenuse is related to the legs of the right triangle by[4][5]

For solutions of this equation in integer values of see here.

The altitude from either leg coincides with the other leg. Since these intersect at the right-angled vertex, the right triangle's orthocenter—the intersection of its three altitudes—coincides with the right-angled vertex.

Inradius and circumradius

The radius of the incircle of a right triangle with legs and and hypotenuse is

The radius of the circumcircle is half the length of the hypotenuse,

Thus the sum of the circumradius and the inradius is half the sum of the legs:[6]

One of the legs can be expressed in terms of the inradius and the other leg as

Characterizations

A triangle with sides , semiperimeter , area altitude opposite the longest side, circumradius inradius exradii tangent to respectively, and medians is a right triangle if and only if any one of the statements in the following six categories is true. Each of them is thus also a property of any right triangle.

Sides and semiperimeter

  • [7]
  • [8]

Angles

  • and are complementary.[9]
  • [8][10]
  • [8][10]
  • [10]

Area

  • where is the tangency point of the incircle at the longest side [11]

Inradius and exradii

  • [12]

Altitude and medians

The altitude of a right triangle from its right angle to its hypotenuse is the geometric mean of the lengths of the segments the hypotenuse is split into. Using Pythagoras' theorem on the 3 triangles of sides (p + q, r, s ), (r, p, h ) and (s, h, q ),

Circumcircle and incircle

Trigonometric ratios

The trigonometric functions for acute angles can be defined as ratios of the sides of a right triangle. For a given angle, a right triangle may be constructed with this angle, and the sides labeled opposite, adjacent and hypotenuse with reference to this angle according to the definitions above. These ratios of the sides do not depend on the particular right triangle chosen, but only on the given angle, since all triangles constructed this way are similar. If, for a given angle α, the opposite side, adjacent side and hypotenuse are labeled and respectively, then the trigonometric functions are

For the expression of hyperbolic functions as ratio of the sides of a right triangle, see the hyperbolic triangle of a hyperbolic sector.

Special right triangles

The values of the trigonometric functions can be evaluated exactly for certain angles using right triangles with special angles. These include the 30-60-90 triangle which can be used to evaluate the trigonometric functions for any multiple of and the isosceles right triangle or 45-45-90 triangle which can be used to evaluate the trigonometric functions for any multiple of

Kepler triangle

Let and be the harmonic mean, the geometric mean, and the arithmetic mean of two positive numbers and with If a right triangle has legs and and hypotenuse then[13]

where is the golden ratio. Since the sides of this right triangle are in geometric progression, this is the Kepler triangle.

Thales' theorem

Median of a right angle of a triangle

Thales' theorem states that if is the diameter of a circle and is any other point on the circle, then is a right triangle with a right angle at The converse states that the hypotenuse of a right triangle is the diameter of its circumcircle. As a corollary, the circumcircle has its center at the midpoint of the diameter, so the median through the right-angled vertex is a radius, and the circumradius is half the length of the hypotenuse.

Medians

The following formulas hold for the medians of a right triangle:

The median on the hypotenuse of a right triangle divides the triangle into two isosceles triangles, because the median equals one-half the hypotenuse.

The medians and from the legs satisfy[6]: p.136, #3110 

Euler line

In a right triangle, the Euler line contains the median on the hypotenuse—that is, it goes through both the right-angled vertex and the midpoint of the side opposite that vertex. This is because the right triangle's orthocenter, the intersection of its altitudes, falls on the right-angled vertex while its circumcenter, the intersection of its perpendicular bisectors of sides, falls on the midpoint of the hypotenuse.

Inequalities

In any right triangle the diameter of the incircle is less than half the hypotenuse, and more strongly it is less than or equal to the hypotenuse times [14]: p.281 

In a right triangle with legs and hypotenuse

with equality only in the isosceles case.[14]: p.282, p.358 

If the altitude from the hypotenuse is denoted then

with equality only in the isosceles case.[14]: p.282 

Other properties

If segments of lengths and emanating from vertex trisect the hypotenuse into segments of length then[2]: pp. 216–217 

The right triangle is the only triangle having two, rather than one or three, distinct inscribed squares.[15]

Given any two positive numbers and with Let and be the sides of the two inscribed squares in a right triangle with hypotenuse Then

These sides and the incircle radius are related by a similar formula:

The perimeter of a right triangle equals the sum of the radii of the incircle and the three excircles:

See also

References

  1. ^ Di Domenico, Angelo S., "A property of triangles involving area", Mathematical Gazette 87, July 2003, pp. 323–324.
  2. ^ a b Posamentier, Alfred S., and Salkind, Charles T. Challenging Problems in Geometry, Dover, 1996.
  3. ^ Wentworth p. 156
  4. ^ Voles, Roger, "Integer solutions of ," Mathematical Gazette 83, July 1999, 269–271.
  5. ^ Richinick, Jennifer, "The upside-down Pythagorean Theorem," Mathematical Gazette 92, July 2008, 313–317.
  6. ^ a b c d e Inequalities proposed in "Crux Mathematicorum", [1].
  7. ^ "Triangle right iff s = 2R + r, Art of problem solving, 2011". Archived from the original on 2014-04-28. Retrieved 2012-01-02.
  8. ^ a b c d Andreescu, Titu and Andrica, Dorian, "Complex Numbers from A to...Z", Birkhäuser, 2006, pp. 109–110.
  9. ^ "Properties of Right Triangles". Archived from the original on 2011-12-31. Retrieved 2012-02-15.
  10. ^ a b c CTK Wiki Math, A Variant of the Pythagorean Theorem, 2011, [2] Archived 2013-08-05 at the Wayback Machine.
  11. ^ Darvasi, Gyula (March 2005), "Converse of a Property of Right Triangles", The Mathematical Gazette, 89 (514): 72–76, doi:10.1017/S0025557200176806, S2CID 125992270.
  12. ^ Bell, Amy (2006), "Hansen's Right Triangle Theorem, Its Converse and a Generalization" (PDF), Forum Geometricorum, 6: 335–342, archived (PDF) from the original on 2008-07-25
  13. ^ Di Domenico, A., "The golden ratio — the right triangle — and the arithmetic, geometric, and harmonic means," Mathematical Gazette 89, July 2005, 261. Also Mitchell, Douglas W., "Feedback on 89.41", vol 90, March 2006, 153–154.
  14. ^ a b c Posamentier, Alfred S., and Lehmann, Ingmar. The Secrets of Triangles. Prometheus Books, 2012.
  15. ^ Bailey, Herbert, and DeTemple, Duane, "Squares inscribed in angles and triangles", Mathematics Magazine 71(4), 1998, 278–284.

Read other articles:

カノジョは嘘を愛しすぎてる ジャンル 少女漫画、恋愛漫画 漫画 作者 青木琴美 出版社 小学館 掲載誌 Cheese! レーベル Cheese! フラワーコミックス 発表期間 2009年5月号 - 2017年4月号 巻数 全22巻 テンプレート - ノート 『カノジョは嘘を愛しすぎてる』(カノジョはうそをあいしすぎてる)は、青木琴美による日本の漫画作品。『Cheese!』(小学館)にて、2009年5月号から2017年4

 

 

1977年の阪急ブレーブス成績 日本一日本S 4勝1敗(対巨人)[1] パシフィック・リーグ優勝PO 3勝2敗(対ロッテ) 69勝51敗10分 勝率.575[2]前期優勝 35勝25敗5分勝率.583[2]後期2位 34勝26敗5分勝率.567[2]本拠地都市 兵庫県西宮市球場 阪急西宮球場 球団組織オーナー 森薫経営母体 阪急電鉄監督 上田利治« 19761978 » テンプレートを表示 1977年の阪急ブレ...

 

 

Untuk tokoh pendiri Budi Utomo, lihat Soetomo. Untuk kelompok sekolah di Kota Medan, lihat Perguruan Sutomo. Sutomo(Bung Tomo)Menteri Negara Urusan Bekas Pejuang Indonesia ke-1Masa jabatan12 Agustus 1955 – 24 Maret 1956PresidenSoekarnoPerdana MenteriBurhanuddin HarahapPenggantiDahlan IbrahimMenteri Sosial Indonesia(ad-interim)Masa jabatan18 Januari 1956 – 24 Maret 1956PresidenSoekarnoPerdana MenteriBurhanuddin HarahapPendahuluSoedibjoPenggantiFatah Jasin Informasi pr...

Gaelic games club in Cork City, Ireland MayfieldBaile na mBochtFounded:1893County:CorkColours:Red and WhiteGrounds:Lotabeg, MayfieldPlaying kits Standard colours Mayfied GAA Club (CLG Baile na mBocht) is a Gaelic Athletic Association club based in the Mayfield area of Cork City, Ireland. Teams are fielded in Gaelic football, hurling, and Ladies' Football. The club participates in Cork GAA competitions and in Seandún board competitions. The club competes at Intermediate level in football and ...

 

 

1996 single by Metallica Hero of the DaySingle by Metallicafrom the album Load B-sideSee belowReleasedSeptember 9, 1996[1]RecordedDecember 13, 1995StudioThe Plant (Sausalito, California)GenreAlternative rock[2]Length4:21LabelElektraVertigoComposer(s)Kirk HammettJames HetfieldLars UlrichLyricist(s)James HetfieldProducer(s)Bob RockJames HetfieldLars UlrichMetallica singles chronology Until It Sleeps (1996) Hero of the Day (1996) Mama Said (1996) Music videoHero of the Day on You...

 

 

Bajo Tatra Ubicación del Bajo Tatra en Eslovaquia (en gris)Ubicación geográficaCordillera ...Coordenadas 48°57′N 19°30′E / 48.95, 19.5Ubicación administrativaPaís EslovaquiaCaracterísticasMáxima cota Ďumbier (Ďumbier (2.043,4 msnm.))[editar datos en Wikidata] Monte Ďumbier (derecha) y monte Chopok (medio) El Bajo Tatra o Tatras (eslovaco, Nízke Tatry; húngaro, Alacsony Tátra) es una cordillera en el centro de Eslovaquia. Se encuentra al sur del Alt...

Präaurikuläres Ohranhangsgebilde Ein Präaurikularanhang ist ein läppchenartiges Anhängsel vor der Ohrmuschel, das aus Haut, Bindegewebe oder Knorpelgewebe besteht. Die Fehlbildung allein ist harmlos, kann aber zusammen mit genetischen Erkrankungen auftreten (z. B. Katzenaugen-Syndrom).[1] Ursachen können ein doppelt angelegter Tragus oder Rudimente des Kiemengangs sein.[2] Krankheitswert besitzt ein Präaurikularanhang nur bei kosmetischer Beeinträchtigung oder wen...

 

 

Cet article est une ébauche concernant un gratte-ciel et Chicago. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Three First National PlazaHistoireArchitecte Skidmore, Owings and MerrillConstruction 1981Ouverture 1981Statut ConstruitUsage BureauxArchitectureStyle ModerneHauteur Toit : 233.8 mSurface 133 709 m2Étages 57AdministrationSite web (en) www.property-website.com/pws/sites/14/live/index.jspLoc...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) الجنرال دير فولشيرميرتروب تعديل مصدري - تعديل   الجنرال دير فولشيرميروب (جنرال فيلق المظلات) جنرالً ال...

Automobile technology This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Electronic throttle control – news · newspapers · books · scholar · JSTOR (July 2013) (Learn how and when to remove this template message) Throttle body with integrated motor actuator Electronic throttle control (ETC), also known as e-gas ...

 

 

9th century Andalusian Jewish scholar, physician and official Not to be confused with Ibn Shaprut. This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: Style. Please help improve this article if you can. (April 2017) (Learn how and when to remove this template message) Part of a series onJewish philosophy Hellenistic Positions: HasmoneanSadduceanPhariseeBoethusian People: Aristobulus of AlexandriaPhilo of Alexandria Medieval Influenced by: Brethren ...

 

 

Roberto I de Nápoles Rey de Nápoles 5 de mayo de 1309-20 de enero de 1343Predecesor Carlos IISucesor Juana I Conde de Provenza y de Forcalquier 5 de mayo de 1309-20 de enero de 1343Predecesor Carlos IISucesor Juana I Rey titular de Jerusalén 5 de mayo de 1309-20 de enero de 1343Predecesor Carlos IISucesor Juana I Información personalNacimiento 1277 o 1278 Santa Maria Capua Vetere (Italia) Fallecimiento 20 de enero de 1343jul. o 1343 Nápoles (Reino de Nápoles) Sepultura Basílica de Sant...

1946 film by Joseph H. Lewis So Dark the NightTheatrical release posterDirected byJoseph H. LewisScreenplay byDwight V. BabcockMartin BerkeleyStory byAubrey WisbergProduced byTed RichmondStarringSteven GerayMicheline CheirelCinematographyBurnett GuffeyEdited byJerome ThomsMusic byHugo FriedhoferProductioncompanyColumbia PicturesDistributed byColumbia PicturesRelease date October 10, 1946 (1946-10-10) Running time70 minutesCountryUnited StatesLanguageEnglish So Dark the Night is...

 

 

Serangan Aleppo (November 2016)Bagian dari Pertempuran Aleppo (Perang saudara Suriah) dan Intervensi militer Rusia dalam perang saudara SuriahTanggal15 November 2016 – sekarang (7 tahun dan 1 hari)LokasiAleppo, Kegubernuran Aleppo, SuriahStatus Masih berlangsung Pasukan pemerintah merebut 30–45% dari wilayah Aleppo yang dikuasai pemberontako[4][5] Lebih dari 50.000 warga sipil meninggalkan Aleppo Timur[6]Pihak terlibat Suriah  Rusia Milisi se...

 

 

Panneau indicateur sur le site de l'ancienne résidence du clan Ii à Edo (maintenant Chiyoda). Le domaine de Hikone (彦根藩, Hikone Han?) est un domaine féodal japonais de l'époque d'Edo situé dans la province d'Ōmi (actuelle préfecture de Shiga). Créé en 1600 avec Ii Naomasa pour premier daimyo, les quinze daimyos qui lui succèdent sont tous issus du même clan Ii. Grand domaine fudai, Hikone est initialement classé pour une valeur de 180 000 koku. Ce classement atteint un ...

2021 Sri Lankan film AlboradaSinhalaඇල්බොරාදා Directed byAsoka HandagamaWritten byAsoka HandagamaBased onSex life of Pablo Neruda in Sri LankaProduced byH.D. PremasiriStarringLuis Romero Anne Solen Dominic Keller Nimaya HarrisCinematographyChanna DeshapriyaEdited byRavindra GurugeMusic byAjith Kumarasiri Namini PanchalaRelease dates November 3, 2021 (2021-11-03) (Tokyo International Film Festival) February 14, 2022 (2022-02-14) (Sri Lank...

 

 

South Korean actor In this Korean name, the family name is Kim. Kim Dae-gonKim Dae-gon 2019BornKim Dae-gon (1983-12-13) 13 December 1983 (age 39)South KoreaOther namesGim Dae-gonOccupationActorYears active2016–presentAgentLFNT EntertainmentSpouse Unknown ​(m. 2022)​Korean nameHangul김대곤Revised RomanizationGim Dae-gonMcCune–ReischauerKim TaegonBirth nameHangul김대곤Revised RomanizationGim Dae-gonMcCune–ReischauerKim Taegon Kim Dae-gon (...

 

 

2014 studio album by Two Steps from HellMiraclesStudio album by Two Steps from HellReleasedJune 2, 2014 (2014-06-02)GenreNew-age[1]Length1:17:48ProducerThomas BergersenTwo Steps from Hell chronology Classics Volume One(2013) Miracles(2014) Battlecry(2015) Miracles is the sixth public album by the group Two Steps From Hell, released in June 2014. It consists of 21 tracks written entirely by composer Thomas J. Bergersen.[2] This album predominantly feature...

Museum Sumpah PemudaTampak depan dari Gedung Museum Sumpah PemudaDidirikan20 Mei 1974LokasiJalan Kramat Raya No. 106,Jakarta Pusat, DKI JayaIndonesiaAkses transportasi umumKA Commuter Jabodetabek: C L stasiun Pasar SenenTransjakarta: 4 (4M) 5 5C 5D 5E 11 (11V) halte Pal PutihSitus webmuseumsumpahpemuda.kemdikbud.go.id Cagar budaya IndonesiaGedung Museum Sumpah PemudaPeringkatNasionalKategoriBangunanNo. RegnasCB.9LokasikeberadaanJakarta Pusat, DKI JakartaTanggal SK1983, 1993 & 2013Pemilik&...

 

 

German plan for disabling the Panama Canal during World War II This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Operation Pelikan – news · newspapers · books · scholar · JSTOR (August 2007) (Learn how and when to remove this template message) Operation PelikanPart of the American Theater of World War IIA sche...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!