Ex-tangential quadrilateral

  Ex-tangential quadrilateral ABCD
  Extended sides of ABCD
  Excircle of ABCD

In Euclidean geometry, an ex-tangential quadrilateral is a convex quadrilateral where the extensions of all four sides are tangent to a circle outside the quadrilateral.[1] It has also been called an exscriptible quadrilateral.[2] The circle is called its excircle, its radius the exradius and its center the excenter (E in the figure). The excenter lies at the intersection of six angle bisectors. These are the internal angle bisectors at two opposite vertex angles, the external angle bisectors (supplementary angle bisectors) at the other two vertex angles, and the external angle bisectors at the angles formed where the extensions of opposite sides intersect (see the figure to the right, where four of these six are dotted line segments). The ex-tangential quadrilateral is closely related to the tangential quadrilateral (where the four sides are tangent to a circle).

Another name for an excircle is an escribed circle,[3] but that name has also been used for a circle tangent to one side of a convex quadrilateral and the extensions of the adjacent two sides. In that context all convex quadrilaterals have four escribed circles, but they can at most have one excircle.[4]

Special cases

Kites are examples of ex-tangential quadrilaterals. Parallelograms (which include squares, rhombi, and rectangles) can be considered ex-tangential quadrilaterals with infinite exradius since they satisfy the characterizations in the next section, but the excircle cannot be tangent to both pairs of extensions of opposite sides (since they are parallel).[4] Convex quadrilaterals whose side lengths form an arithmetic progression are always ex-tangential as they satisfy the characterization below for adjacent side lengths.

Characterizations

A convex quadrilateral is ex-tangential if and only if there are six concurrent angles bisectors. These are the internal angle bisectors at two opposite vertex angles, the external angle bisectors at the other two vertex angles, and the external angle bisectors at the angles formed where the extensions of opposite sides intersect.[4]

For the purpose of calculation, a more useful characterization is that a convex quadrilateral with successive sides a, b, c, d is ex-tangential if and only if the sum of two adjacent sides is equal to the sum of the other two sides. This is possible in two different ways:

or

This was proved by Jakob Steiner in 1846.[5] In the first case, the excircle is outside the biggest of the vertices A or C, whereas in the second case it is outside the biggest of the vertices B or D, provided that the sides of the quadrilateral ABCD are

A way of combining these characterizations regarding the sides is that the absolute values of the differences between opposite sides are equal for the two pairs of opposite sides,[4]

These equations are closely related to the Pitot theorem for tangential quadrilaterals, where the sums of opposite sides are equal for the two pairs of opposite sides.

Urquhart's theorem

If opposite sides in a convex quadrilateral ABCD intersect at E and F, then

The implication to the right is named after L. M. Urquhart (1902–1966) although it was proved long before by Augustus De Morgan in 1841. Daniel Pedoe named it the most elementary theorem in Euclidean geometry since it only concerns straight lines and distances.[6] That there in fact is an equivalence was proved by Mowaffac Hajja,[6] which makes the equality to the right another necessary and sufficient condition for a quadrilateral to be ex-tangential.

Comparison with a tangential quadrilateral

A few of the metric characterizations of tangential quadrilaterals (the left column in the table) have very similar counterparts for ex-tangential quadrilaterals (the middle and right column in the table), as can be seen in the table below.[4] Thus a convex quadrilateral has an incircle or an excircle outside the appropriate vertex (depending on the column) if and only if any one of the five necessary and sufficient conditions below is satisfied.

Incircle Excircle outside of A or C Excircle outside of B or D

The notations in this table are as follows: In a convex quadrilateral ABCD, the diagonals intersect at P.

  • R1, R2, R3, R4 are the circumradii in triangles ABP, △BCP, △CDP, △DAP;
  • h1, h2, h3, h4 are the altitudes from P to the sides a = |AB|, b = |BC|, c = |CD|, d = |DA| respectively in the same four triangles;
  • e, f, g, h are the distances from the vertices A, B, C, D respectively to P;
  • x, y, z, w are the angles ABD, ∠ADB, ∠BDC, ∠DBC respectively;
  • and Ra, Rb, Rc, Rd are the radii in the circles externally tangent to the sides a, b, c, d respectively and the extensions of the adjacent two sides for each side.

Area

An ex-tangential quadrilateral ABCD with sides a, b, c, d has area

Note that this is the same formula as the one for the area of a tangential quadrilateral and it is also derived from Bretschneider's formula in the same way.

Exradius

The exradius for an ex-tangential quadrilateral with consecutive sides a, b, c, d is given by[4]

where K is the area of the quadrilateral. For an ex-tangential quadrilateral with given sides, the exradius is maximum when the quadrilateral is also cyclic (and hence an ex-bicentric quadrilateral). These formulas explain why all parallelograms have infinite exradius.

Ex-bicentric quadrilateral

If an ex-tangential quadrilateral also has a circumcircle, it is called an ex-bicentric quadrilateral.[1] Then, since it has two opposite supplementary angles, its area is given by

which is the same as for a bicentric quadrilateral.

If x is the distance between the circumcenter and the excenter, then[1]

where R, r are the circumradius and exradius respectively. This is the same equation as Fuss's theorem for a bicentric quadrilateral. But when solving for x, we must choose the other root of the quadratic equation for the ex-bicentric quadrilateral compared to the bicentric. Hence, for the ex-bicentric we have[1]

From this formula it follows that

which means that the circumcircle and excircle can never intersect each other.

See also

References

  1. ^ a b c d Radic, Mirko; Kaliman, Zoran and Kadum, Vladimir, "A condition that a tangential quadrilateral is also a chordal one", Mathematical Communications, 12 (2007) pp. 33–52.
  2. ^ Bogomolny, Alexander, "Inscriptible and Exscriptible Quadrilaterals", Interactive Mathematics Miscellany and Puzzles, [1]. Accessed 2011-08-18.
  3. ^ K. S. Kedlaya, Geometry Unbound, 2006
  4. ^ a b c d e f Josefsson, Martin, Similar Metric Characterizations of Tangential and Extangential Quadrilaterals, Forum Geometricorum Volume 12 (2012) pp. 63-77 [2] Archived 2022-01-16 at the Wayback Machine
  5. ^ F. G.-M., Exercices de Géométrie, Éditions Jacques Gabay, sixiéme édition, 1991, p. 318.
  6. ^ a b Hajja, Mowaffaq, A Very Short and Simple Proof of “The Most Elementary Theorem” of Euclidean Geometry, Forum Geometricorum Volume 6 (2006) pp. 167–169 [3] Archived 2021-11-19 at the Wayback Machine

Read other articles:

В физике консервати́вные си́лы (потенциальные силы) — это силы, работа которых не зависит от вида траектории, точки приложения этих сил и закона их движения, и определяется только начальным и конечным положением этой точки[1]. Равносильным определением является и ...

 

Derby della MadonninaNama lainDerbi Milan, Derby di MilanoLokasiMilan, ItaliaTim terlibatInter MilanAC MilanPertemuan pertama10 Januari 1909Prima CategoriaMilan 3–2 InterPertemuan termutakhir16 September 2023Serie AInter 5–1 MilanPertemuan selanjutnya21 April 2024Serie AMilan vs. InterStadionSan SiroStatistikTotal pertemuanPertandingan resmi: 238Pertandingan tak resmi: 71Total pertandingan: 309Kemenangan terbanyakPertandingan resmi: Inter (90)Pertandingan tak resmi: Milan (36)Total pertan...

 

← 1980 •  • 2007 → Referéndum sobre la aprobación del Estatuto de Autonomía de AndalucíaAprobación del Estatuto de Autonomía de Andalucía Fecha 20 de octubre de 1981 Tipo Referéndum Sí[1]​    89.38 % No[1]​    7.00 % Voto en blanco[1]​    2.87 % Voto nulo[1]​    0.74 % Abstención[1]​    46.51 % El Referéndum sobre el Estatuto de Autonom...

Roman Catholic diocese in Vietnam Diocese of Phan ThiêtDioecesis PhanthietensisGiáo phận Phan ThiếtLocationCountryVietnamEcclesiastical provinceHo Chi MinhMetropolitanHo Chi MinhStatisticsArea7,854 km2 (3,032 sq mi)Population- Total- Catholics(as of 2004)1,106,012147,000 (13.3%)InformationDenominationRoman CatholicSui iuris churchLatin ChurchRiteRoman RiteEstablished30 January 1975CathedralCathedral of the Sacred Heart in Phan ThiếtPatron saintMary, Mothe...

 

Judgement of the High Court of Australia This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2018) (Learn how and when to remove this template message) Dennis Hotels Pty Ltd v VictoriaCourtHigh Court of AustraliaDecided26 February 1960Citation(s)[1960] HCA 10, (1960) 104 CLR 529Case historyAppealed toPrivy Council [1961] UKP...

 

Ancient Roman law Politics of ancient Rome Periods Roman Kingdom753–509 BC Roman Republic509–27 BC Roman Empire27 BC – AD 395 Principate27 BC – AD 284 DominateAD 284–641 WesternAD 395–476 EasternAD 395–1453 Timeline Constitution Kingdom Republic Sullan republic Empire Augustan reforms Late Empire Political institutions Imperium Collegiality Auctoritas Roman citizenship Cursus honorum Assemblies Centuriate Curiate Plebeian Tribal Ordinary magistrates Consul Praetor Quaestor Proma...

2011 film by Thiagarajan Ponnar ShankarRelease posterDirected byThiagarajanWritten byM. KarunanidhiBased onPonnar Shankarby M. KarunanidhiProduced byThiagarajanStarringPrashanthPooja ChopraDivya ParameshwaranPrakash RajPrabhuJayaramKhushbu SundarSnehaVijayakumarNassarRajkiranNapoleonPonvannanCinematographyShaji KumarEdited byDon MaxMusic byIlaiyaraajaProductioncompanyLakshmi Shanthi MoviesDistributed byLakshmi Shanthi MoviesRelease date 9 April 2011 (2011-04-09) CountryIndiaLan...

 

1968 Indian filmLiludi DharatiC.D. coverDirected byVallabh ChoksiWritten byChunilal MadiaBased onLiludi Dharatiby Chunilal MadiaProduced bySuresh AminStarring Daisy Irani Mahesh Desai Kala Shah Champshibhai Nagda Upendra Kumar Music by Purushottam Upadhyay Gaurang Vyas ProductioncompanyK V FilmsRelease date 1968 (1968) (India) Running time2 Hrs 18 Minutes[1]CountryIndiaLanguageGujarati Liludi Dharati (transl. The Green Earth) is a 1968 Gujarati social drama film directe...

 

Play about 1941 atom bomb meeting This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Copenhagen play – news · newspapers · books · scholar · JSTOR (March 2023) (Learn how and when to remove this template message) Copenhagen1998 Premiere season programmeWritten byMichael FraynCharactersNiels BohrMargrethe B...

Mixed-use development in Marina South, Singapore Marina OneMarina One in 2018General informationStatusCompletedTypeIntegrated development: residential, offices, retailArchitectural styleNeofuturisticAddress7 Straits View, Singapore 018936 (Marina One East Tower)9 Straits View, Singapore 018937 (Marina One West Tower)21/23 Marina Way, Singapore 018978/018979 (Marina One Residences)5 Straits View, Singapore 018935 (The Heart)CountrySingaporeCoordinates1°16′37.73″N 103°51′14.45″E࿯...

 

Visitor center at Fall River Pass, Colorado This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Alpine Visitor Center – news · newspapers · books · scholar · JSTOR (April 2014) The visitor center in late May Rocky Mountain National Park's Alpine Visitor Center is located at 11,796 feet (3,595 m) above ...

 

Beberapa rempah-rempah asal Indonesia sebagai obat atau bumbu masakan. Rempah-rempah adalah bagian tumbuhan yang beraroma atau berasa kuat yang digunakan dalam jumlah kecil di makanan sebagai pengawet atau perisa dalam masakan. Rempah-rempah biasanya dibedakan dengan tanaman lain yang digunakan untuk tujuan yang mirip, seperti tanaman obat, sayuran beraroma, dan buah kering. Rempah-rempah merupakan barang dagangan paling berharga pada zaman prakolonial. Banyak rempah-rempah dulunya digunakan ...

Book by Mary Renault First edition (publ. Pantheon Books) The Praise Singer is a historical novel by Mary Renault first published in 1978.[1][2][3] Its narrator and main character is the real-life lyric poet Simonides of Ceos, whose life (ca. 556 BC-469 BCE) spanned the transition from an oral to a written culture in Ancient Greece. Renault's fiction argues that this transition was in part responsible for the cultural flowering known as the Golden Age of Athens—thoug...

 

1997 American filmTravellerTheatrical release posterDirected byJack N. GreenWritten byJim McGlynnProduced byDavid BlockerMickey LiddellBill PaxtonBrian SwardstromStarring Bill Paxton Mark Wahlberg Julianna Margulies James Gammon Luke Askew CinematographyJack N. GreenEdited byMichael RuscioMusic byAndy PaleyProductioncompaniesBanner EntertainmentMDP WorldwideDistributed byOctober FilmsTraveler Production Company L.l.c.Release dates March 8, 1997 (1997-03-08) (SXSW)[1]...

 

Содержание 1 Административно-территориальное устройство 1.1 Города республиканского значения 1.2 Районы 1.3 Районы в городе 1.4 История административно-территориального деления республики 1.4.1 Советский период 1.4.1.1 1920–1930 1.4.1.2 1931–1935 1.4.1.3 1935 1.4.1.4 1936–1944 1.4.1.5 1944 1.4.1.6 1945–1956 1.4.1.7 195...

1971 Burmese film This article needs a plot summary. Please add one in your own words. (March 2021) (Learn how and when to remove this template message) Ta Kyawt Hna Kyawt Tay Ko Thifilm posterBurmeseတကျော့နှစ်ကျော့တေးကိုသီ Directed byHtun Nyunt OoScreenplay byNanda ThuStory byNanda ThuStarring Win Oo Tin Tin Mya Cho Pyone CinematographyThein AungOne MaungEdited by Phone Myint Maung Maung Myint Wai Tin Myint Music byA1 Khin MaungA1 Soe MyintProduc...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. بطل العالم الحالي في الشطرنج السريع النرويجي ماغنوس كارلسن بطولة العالم للشطرنج السريع هي بطولة شطرنج تقام لتحديد بطل العالم في الشطرنج الذي يُلعب تحت ضوابط وقت سريع. قبل عا...

 

For other uses, see Valsesia (disambiguation). Group of valleys in Piedmont in the Province of Vercelli, Italy This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Valsesia – news · newspapers · books · scholar · JSTOR (June 2022) (Learn how and when to remove this template message) ValsesiaThe upper ValsesiaLoca...

АвтодорогаInterstate 90 I-90 и 90 Основная информация Страна Соединённые Штаты Америки Регионы Индиана, Массачусетс, Вайоминг, Вашингтон, Айдахо, Монтана, Южная Дакота, Миннесота, Висконсин, Иллинойс, Огайо, Пенсильвания и Нью-Йорк Статус Interstate Highwa...

 

Christmas-themed television film Three Wise GuysGenreChristmasScreenplay byLloyd GoldStory byDamon RunyonDirected byRobert IscoveStarringTom ArnoldEddie McClintockJudd NelsonJodi Lyn O'KeefeKatey SagalNick TurturroMusic byChristopher LennertzProductionProduction locationsAlbuquerque, NM, USCinematographyFrancis KennyRunning time87 minutesProduction companyLions Gate TelevisionOriginal releaseNetworkUSA NetworkReleaseDecember 8, 2005 (2005-12-08) Three Wise Guys is a 2005 Christ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!