Organic field-effect transistor

OFET-based flexible display
Organic CMOS logic circuit. Total thickness is less than 3 μm. Scale bar: 25 mm

An organic field-effect transistor (OFET) is a field-effect transistor using an organic semiconductor in its channel. OFETs can be prepared either by vacuum evaporation of small molecules, by solution-casting of polymers or small molecules, or by mechanical transfer of a peeled single-crystalline organic layer onto a substrate. These devices have been developed to realize low-cost, large-area electronic products and biodegradable electronics. OFETs have been fabricated with various device geometries. The most commonly used device geometry is bottom gate with top drain and source electrodes, because this geometry is similar to the thin-film silicon transistor (TFT) using thermally grown SiO2 as gate dielectric. Organic polymers, such as poly(methyl-methacrylate) (PMMA), can also be used as dielectric.[1] One of the benefits of OFETs, especially compared with inorganic TFTs, is their unprecedented physical flexibility,[2] which leads to biocompatible applications, for instance in the future health care industry of personalized biomedicines and bioelectronics.[3]

In May 2007, Sony reported the first full-color, video-rate, flexible, all plastic display,[4][5] in which both the thin-film transistors and the light-emitting pixels were made of organic materials.

History

The concept of a field-effect transistor (FET) was first proposed by Julius Edgar Lilienfeld, who received a patent for his idea in 1930.[6] He proposed that a field-effect transistor behaves as a capacitor with a conducting channel between a source and a drain electrode. Applied voltage on the gate electrode controls the amount of charge carriers flowing through the system.

The first insulated-gate field-effect transistor was designed and prepared by Frosch and Derrick in 1957, using masking and predeposition, were able to manufacture silicon dioxide transistors and showed that silicon dioxide insulated, protected silicon wafers and prevented dopants from diffusing into the wafer.[7][8] Later, following this research, Mohamed Atalla and Dawon Kahng proposed a silicon MOS transistor in 1959[9] and successfully demonstrated a working MOS device with their Bell Labs team in 1960.[10][11] Their team included E. E. LaBate and E. I. Povilonis who fabricated the device; M. O. Thurston, L. A. D’Asaro, and J. R. Ligenza who developed the diffusion processes, and H. K. Gummel and R. Lindner who characterized the device.[12][13] Also known as the MOS transistor, the MOSFET is the most widely manufactured device in the world.[14][15]

The concept of a thin-film transistor (TFT) was first proposed by John Wallmark who in 1957 filed a patent for a thin film MOSFET in which germanium monoxide was used as a gate dielectric. Thin-film transistor was developed in 1962 by Paul K. Weimer who implemented Wallmark's ideas.[16] The TFT is a special type of MOSFET.[17]

Rising costs of materials and manufacturing,[citation needed] as well as public interest in more environmentally friendly electronics materials, have supported development of organic based electronics in more recent years. In 1986, Mitsubishi Electric researchers H. Koezuka, A. Tsumura and Tsuneya Ando reported the first organic field-effect transistor,[18][19] based on a polymer of thiophene molecules.[20] The thiophene polymer is a type of conjugated polymer that is able to conduct charge, eliminating the need to use expensive metal oxide semiconductors. Additionally, other conjugated polymers have been shown to have semiconducting properties. OFET design has also improved in the past few decades. Many OFETs are now designed based on the thin-film transistor (TFT) model, which allows the devices to use less conductive materials in their design. Improvement on these models in the past few years have been made to field-effect mobility and on–off current ratios.

Materials

One common feature of OFET materials is the inclusion of an aromatic or otherwise conjugated π-electron system, facilitating the delocalization of orbital wavefunctions. Electron withdrawing groups or donating groups can be attached that facilitate hole or electron transport.

OFETs employing many aromatic and conjugated materials as the active semiconducting layer have been reported, including small molecules such as rubrene, tetracene, pentacene, diindenoperylene, perylenediimides, tetracyanoquinodimethane (TCNQ), and polymers such as polythiophenes (especially poly(3-hexylthiophene) (P3HT)), polyfluorene, polydiacetylene, poly(2,5-thienylene vinylene), poly(p-phenylene vinylene) (PPV).

The field is very active, with newly synthesized and tested compounds reported weekly in prominent research journals. Many review articles exist documenting the development of these materials.[21][22][23][24][25]

Rubrene-based OFETs show the highest carrier mobility 20–40 cm2/(V·s). Another popular OFET material is pentacene, which has been used since the 1980s, but with mobilities 10 to 100 times lower (depending on the substrate) than rubrene.[25] The major problem with pentacene, as well as many other organic conductors, is its rapid oxidation in air to form pentacene-quinone. However if the pentacene is preoxidized, and the thus formed pentacene-quinone is used as the gate insulator, then the mobility can approach the rubrene values. This pentacene oxidation technique is akin to the silicon oxidation used in the silicon electronics.[21]

Polycrystalline tetrathiafulvalene and its analogues result in mobilities in the range 0.1–1.4 cm2/(V·s). However, the mobility exceeds 10 cm2/(V·s) in solution-grown or vapor-transport-grown single crystalline hexamethylene-tetrathiafulvalene (HMTTF). The ON/OFF voltage is different for devices grown by those two techniques, presumably due to the higher processing temperatures using in the vapor transport grows.[21]

All the above-mentioned devices are based on p-type conductivity. N-type OFETs are yet poorly developed. They are usually based on perylenediimides or fullerenes or their derivatives, and show electron mobilities below 2 cm2/(V·s).[22]

Device design of organic field-effect transistors

Three essential components of field-effect transistors are the source, the drain and the gate. Field-effect transistors usually operate as a capacitor. They are composed of two plates. One plate works as a conducting channel between two ohmic contacts, which are called the source and the drain contacts. The other plate works to control the charge induced into the channel, and it is called the gate. The direction of the movement of the carriers in the channel is from the source to the drain. Hence the relationship between these three components is that the gate controls the carrier movement from the source to the drain.[26]

When this capacitor concept is applied to the device design, various devices can be built up based on the difference in the controller – i.e. the gate. This can be the gate material, the location of the gate with respect to the channel, how the gate is isolated from the channel, and what type of carrier is induced by the gate voltage into channel (such as electrons in an n-channel device, holes in a p-channel device, and both electrons and holes in a double injection device).

Figure 1. Schematic of three kinds of field-effect transistor (FET): (a) metal-insulator-semiconductor FET (MISFET); (b) metal-semiconductor FET (MESFET); (c) thin-film transistor (TFT).

Classified by the properties of the carrier, three types of FETs are shown schematically in Figure 1.[27] They are MOSFET (metal–oxide–semiconductor field-effect transistor), MESFET (metal–semiconductor field-effect transistor) and TFT (thin-film transistor).

MOSFET

The most prominent and widely used FET in modern microelectronics is the MOSFET (metal–oxide–semiconductor FET). There are different kinds in this category, such as MISFET (metal–insulator–semiconductor field-effect transistor), and IGFET (insulated-gate FET). A schematic of a MISFET is shown in Figure 1a. The source and the drain are connected by a semiconductor and the gate is separated from the channel by a layer of insulator. If there is no bias (potential difference) applied on the gate, the Band bending is induced due to the energy difference of metal conducting band and the semiconductor Fermi level. Therefore, a higher concentration of holes is formed on the interface of the semiconductor and the insulator. When an enough positive bias is applied on the gate contact, the bended band becomes flat. If a larger positive bias is applied, the band bending in the opposite direction occurs and the region close to the insulator-semiconductor interface becomes depleted of holes. Then the depleted region is formed. At an even larger positive bias, the band bending becomes so large that the Fermi level at the interface of the semiconductor and the insulator becomes closer to the bottom of the conduction band than to the top of the valence band, therefore, it forms an inversion layer of electrons, providing the conducting channel. Finally, it turns the device on.[28]

MESFET

The second type of device is described in Fig.1b. The only difference of this one from the MISFET is that the n-type source and drain are connected by an n-type region. In this case, the depletion region extends all over the n-type channel at zero gate voltage in a normally “off” device (it is similar to the larger positive bias in MISFET case). In the normally “on” device, a portion of the channel is not depleted, and thus leads to passage of a current at zero gate voltage.

TFT

A thin-film transistor (TFT) is illustrated in Figure 1c. Here the source and drain electrodes are directly deposited onto the conducting channel (a thin layer of semiconductor) then a thin film of insulator is deposited between the semiconductor and the metal gate contact. This structure suggests that there is no depletion region to separate the device from the substrate. If there is zero bias, the electrons are expelled from the surface due to the Fermi-level energy difference of the semiconductor and the metal. This leads to band bending of semiconductor. In this case, there is no carrier movement between the source and drain. When the positive charge is applied, the accumulation of electrons on the interface leads to the bending of the semiconductor in an opposite way and leads to the lowering of the conduction band with regards to the Fermi-level of the semiconductor. Then a highly conductive channel forms at the interface (shown in Figure 2).

Figure 2: Schematic of band-bending in the TFT device model.

OFET

OFETs adopt the architecture of TFT. With the development of the conducting polymer, the semiconducting properties of small conjugated molecules have been recognized. The interest in OFETs has grown enormously in the past ten years. The reasons for this surge of interest are manifold. The performance of OFETs, which can compete with that of amorphous silicon (a-Si) TFTs with field-effect mobilities of 0.5–1 cm2 V−1 s−1 and ON/OFF current ratios (which indicate the ability of the device to shut down) of 106–108, has improved significantly. Currently, thin-film OFET mobility values of 5 cm2 V−1 s−1 in the case of vacuum-deposited small molecules[29] and 0.6 cm2 V−1 s−1 for solution-processed polymers[30] have been reported. As a result, there is now a greater industrial interest in using OFETs for applications that are currently incompatible with the use of a-Si or other inorganic transistor technologies. One of their main technological attractions is that all the layers of an OFET can be deposited and patterned at room temperature by a combination of low-cost solution-processing and direct-write printing, which makes them ideally suited for realization of low-cost, large-area electronic functions on flexible substrates.[31]

Device preparation

OFET schematic

Thermally oxidized silicon is a traditional substrate for OFETs where the silicon dioxide serves as the gate insulator. The active FET layer is usually deposited onto this substrate using either (i) thermal evaporation, (ii) coating from organic solution, or (iii) electrostatic lamination. The first two techniques result in polycrystalline active layers; they are much easier to produce, but result in relatively poor transistor performance. Numerous variations of the solution coating technique (ii) are known, including dip-coating, spin-coating, inkjet printing and screen printing. The electrostatic lamination technique is based on manual peeling of a thin layer off a single organic crystal; it results in a superior single-crystalline active layer, yet it is more tedious. The thickness of the gate oxide and the active layer is below one micrometer.[21]

Carrier transport

Evolution of carrier mobility in organic field-effect transistor[21]

The carrier transport in OFET is specific for two-dimensional (2D) carrier propagation through the device. Various experimental techniques were used for this study, such as Haynes - Shockley experiment on the transit times of injected carriers, time-of-flight (TOF) experiment[32] for the determination of carrier mobility, pressure-wave propagation experiment for probing electric-field distribution in insulators, organic monolayer experiment for probing orientational dipolar changes, optical time-resolved second harmonic generation (TRM-SHG), etc. Whereas carriers propagate through polycrystalline OFETs in a diffusion-like (trap-limited) manner,[33] they move through the conduction band in the best single-crystalline OFETs.[21]

The most important parameter of OFET carrier transport is carrier mobility. Its evolution over the years of OFET research is shown in the graph for polycrystalline and single crystalline OFETs. The horizontal lines indicate the comparison guides to the main OFET competitors – amorphous (a-Si) and polycrystalline silicon. The graph reveals that the mobility in polycrystalline OFETs is comparable to that of a-Si whereas mobility in rubrene-based OFETs (20–40 cm2/(V·s)) approaches that of best poly-silicon devices.[21]

Development of accurate models of charge carrier mobility in OFETs is an active field of research. Fishchuk et al. have developed an analytical model of carrier mobility in OFETs that accounts for carrier density and the polaron effect.[34]

While average carrier density is typically calculated as function of gate voltage when used as an input for carrier mobility models,[35] modulated amplitude reflectance spectroscopy (MARS) has been shown to provide a spatial map of carrier density across an OFET channel.[36]

Light-emitting OFETs

Because an electric current flows through such a transistor, it can be used as a light-emitting device, thus integrating current modulation and light emission. In 2003, a German group reported the first organic light-emitting field-effect transistor (OLET).[37] The device structure comprises interdigitated gold source- and drain electrodes and a polycrystalline tetracene thin film. Both positive charges (holes) as well as negative charges (electrons) are injected from the gold contacts into this layer leading to electroluminescence from the tetracene.

See also

References

  1. ^ Salleo, A; Chabinyc, M.L.; Yang, M.S.; Street, RA (2002). "Polymer thin-film transistors with chemically modified dielectric interfaces". Applied Physics Letters. 81 (23): 4383–4385. Bibcode:2002ApPhL..81.4383S. doi:10.1063/1.1527691.
  2. ^ Kaltenbrunner, Martin (2013). "An ultra-lightweight design for imperceptible plastic electronics". Nature. 499 (7459): 458–463. Bibcode:2013Natur.499..458K. doi:10.1038/nature12314. PMID 23887430. S2CID 2657929.
  3. ^ Nawrocki, Robert (2016). "300-nm Imperceptible, Ultraflexible, and Biocompatible e-Skin Fit with Tactile Sensors and Organic Transistors". Advanced Electronic Materials. 2 (4): 1500452. doi:10.1002/aelm.201500452. S2CID 138355533.
  4. ^ プラスチックフィルム上の有機TFT駆動有機ELディスプレイで世界初のフルカラー表示を実現. sony.co.jp (in Japanese)
  5. ^ Flexible, full-color OLED display. pinktentacle.com (2007-06-24).
  6. ^ US 1745175, Lilienfeld, Julius Edgar, "Method and apparatus for controlling electric currents", published 1930-01-28 
  7. ^ Huff, Howard; Riordan, Michael (2007-09-01). "Frosch and Derick: Fifty Years Later (Foreword)". The Electrochemical Society Interface. 16 (3): 29. doi:10.1149/2.F02073IF. ISSN 1064-8208.
  8. ^ Frosch, C. J.; Derick, L (1957). "Surface Protection and Selective Masking during Diffusion in Silicon". Journal of the Electrochemical Society. 104 (9): 547. doi:10.1149/1.2428650.
  9. ^ Bassett, Ross Knox (2007). To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology. Johns Hopkins University Press. pp. 22–23. ISBN 978-0-8018-8639-3.
  10. ^ Atalla, M.; Kahng, D. (1960). "Silicon-silicon dioxide field induced surface devices". IRE-AIEE Solid State Device Research Conference.
  11. ^ "1960 – Metal Oxide Semiconductor (MOS) Transistor Demonstrated". The Silicon Engine. Computer History Museum. Retrieved 2023-01-16.
  12. ^ KAHNG, D. (1961). "Silicon-Silicon Dioxide Surface Device". Technical Memorandum of Bell Laboratories: 583–596. doi:10.1142/9789814503464_0076. ISBN 978-981-02-0209-5.
  13. ^ Lojek, Bo (2007). History of Semiconductor Engineering. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. p. 321. ISBN 978-3-540-34258-8.
  14. ^ "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum. April 2, 2018. Retrieved 28 July 2019.
  15. ^ Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN 978-1118038239.
  16. ^ Weimer, P.K. (1962). "TFT – A New Thin-Film Transistor". Proc. IRE. 50 (6): 1462–1469. doi:10.1109/JRPROC.1962.288190. S2CID 51650159.
  17. ^ Kimizuka, Noboru; Yamazaki, Shunpei (2016). Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO: Fundamentals. John Wiley & Sons. p. 217. ISBN 9781119247401.
  18. ^ "What are OLEDs and OLETs?". LAMP Project. Framework Programmes for Research and Technological Development. Retrieved 29 July 2019.
  19. ^ Tsumura, A.; Koezuka, H.; Ando, Tsuneya (3 November 1986). "Macromolecular electronic device: Field-effect transistor with a polythiophene thin film". Applied Physics Letters. 49 (18): 1210–1212. Bibcode:1986ApPhL..49.1210T. doi:10.1063/1.97417. ISSN 0003-6951.
  20. ^ Koezuka, H.; Tsumura, A.; Ando, Tsuneya (1987). "Field-effect transistor with polythiophene thin film". Synthetic Metals. 18 (1–3): 699–704. doi:10.1016/0379-6779(87)90964-7.
  21. ^ a b c d e f g Hasegawa, Tatsuo; Takeya, Jun (2009). "Organic field-effect transistors using single crystals". Sci. Technol. Adv. Mater. (free download). 10 (2): 024314. Bibcode:2009STAdM..10b4314H. doi:10.1088/1468-6996/10/2/024314. PMC 5090444. PMID 27877287.
  22. ^ a b Yamashita, Yoshiro (2009). "Organic semiconductors for organic field-effect transistors". Sci. Technol. Adv. Mater. (free download). 10 (2): 024313. Bibcode:2009STAdM..10b4313Y. doi:10.1088/1468-6996/10/2/024313. PMC 5090443. PMID 27877286.
  23. ^ Dimitrakopoulos, C.D.; Malenfant, P.R.L. (2002). "Organic Thin Film Transistors for Large Area Electronics". Adv. Mater. 14 (2): 99. Bibcode:2002AdM....14...99D. doi:10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9.
  24. ^ Reese, Colin; Roberts, Mark; Ling, Mang-Mang; Bao, Zhenan (2004). "Organic thin film transistors". Mater. Today. 7 (9): 20. doi:10.1016/S1369-7021(04)00398-0.
  25. ^ a b Klauk, Hagen (2010). "Organic thin-film transistors". Chem. Soc. Rev. 39 (7): 2643–66. doi:10.1039/B909902F. PMID 20396828.
  26. ^ Shur, Michael (September 1990). Physics of Semiconductor Devices. Englewood Cliffs, NJ: Prentice-Hall. ISBN 978-0-13-666496-3.
  27. ^ Horowitz, Paul; Winfield Hill (1989). The Art of Electronics (2nd ed.). Cambridge University Press. ISBN 978-0-521-37095-0.
  28. ^ Shockley, W. (1952). "A Unipolar "Field-Effect" Transistor". Proc. IRE. 40 (11): 1365–1376. doi:10.1109/JRPROC.1952.273964. S2CID 51666093.
  29. ^ Baude, P. F.; Ender, D. A.; Haase, M. A.; Kelley, T. W.; Muyres, D. V.; Theiss, S. D. (2003). "Pentacene-based radio-frequency identification circuitry". Phys. Lett. 82 (22): 3964. Bibcode:2003ApPhL..82.3964B. doi:10.1063/1.1579554.
  30. ^ McCulloch, I. presented at the 229th ACS Natl. Meeting, San Diego, CA, March 2005
  31. ^ Sirringhaus, H. (2005). "Device Physics of Solution-Processed Organic Field-Effect Transistors". Adv. Mater. 17 (20): 2411–2425. Bibcode:2005AdM....17.2411S. doi:10.1002/adma.200501152. S2CID 10232884.
  32. ^ Weis, Martin; Lin, Jack; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa (2009). "Analysis of Transient Currents in Organic Field Effect Transistor: The Time-of-Flight Method". J. Phys. Chem. C. 113 (43): 18459. doi:10.1021/jp908381b.
  33. ^ Manaka, Takaaki; Liu, Fei; Weis, Martin; Iwamoto, Mitsumasa (2008). "Diffusionlike electric-field migration in the channel of organic field-effect transistors". Phys. Rev. B. 78 (12): 121302. Bibcode:2008PhRvB..78l1302M. doi:10.1103/PhysRevB.78.121302.
  34. ^ Fishchuk, Ivan I.; Kadashchuk, Andrey; Hoffmann, Sebastian T.; Athanasopoulos, Stavros; Genoe, J.; Bässler, Heinz; Köhler, Anna (2013). "Unified description for hopping transport in organic semiconductors including both energetic disorder and polaronic contributions" (PDF). Physical Review B. 88 (12): 125202. Bibcode:2013PhRvB..88l5202F. doi:10.1103/PhysRevB.88.125202. ISSN 0163-1829.
  35. ^ Tanase, C.; Meijer, E.J.; Blom, P.W.M.; De Leeuw, D.M. (June 2003). "Local charge carrier mobility in disordered organic field-effect transistors" (PDF). Organic Electronics. 4 (1): 33–37. doi:10.1016/S1566-1199(03)00006-5.
  36. ^ Davis, Andrew R.; Pye, Lorelle N.; Katz, Noam; Hudgings, Janice A.; Carter, Kenneth R. (2014). "Spatially Mapping Charge Carrier Density and Defects in Organic Electronics Using Modulation-Amplified Reflectance Spectroscopy". Advanced Materials. 26 (26): 4539–4545. Bibcode:2014AdM....26.4539D. doi:10.1002/adma.201400859. ISSN 1521-4095. PMID 24889350. S2CID 38572802.
  37. ^ Hepp, Aline; Heil, Holger; Weise, Wieland; Ahles, Marcus; Schmechel, Roland; Von Seggern, Heinz (2003). "Light-Emitting Field-Effect Transistor Based on a Tetracene Thin Film". Phys. Rev. Lett. 91 (15): 157406. Bibcode:2003PhRvL..91o7406H. doi:10.1103/PhysRevLett.91.157406. PMID 14611497.

Read other articles:

This article is about the trolley station in Upper Darby, Pennsylvania. For the subway station, see Walnut–Locust station. Walnut StreetGeneral informationLocationGarrett Road & Walnut StreetUpper Darby, PACoordinates39°57′32″N 75°15′59″W / 39.9589°N 75.2665°W / 39.9589; -75.2665Owned bySEPTAPlatforms2 side platformsTracks2ConstructionStructure typeOpen sheltersHistoryElectrifiedOverhead linesServices Preceding station SEPTA Following station Avon Roa...

 

Dictionary.comJenis situsKamusBahasaInggrisPenciptaBrian KarigerDaniel FierroSitus webdictionary.comDiluncurkan14 Mei 1995; 28 tahun lalu (1995-05-14) Dictionary.com adalah kamus daring yang didirikan bulan Mei 1995[1] oleh Brian Kariger dan Daniel Fierro sebagai bagian dari Lexico Publishing, perusahaan yang juga memiliki Thesaurus.com dan Reference.com.[2] Isi situs ini diambil dari Random House Unabridged Dictionary, Collins English Dictionary, American Heritage Dictio...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2022) إن جي سي 666 (مجرة)   الكوكبة المثلث  رمز الفهرس NGC 666 (الفهرس العام الجديد)UGC 1236 (فهرس أوبسالا العام)PGC 6483 (فهرس المجرات الرئيسية)2MASX J01460620+3422283 (Two Micron All Sky Survey,...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) كاترين غراند (بالفرنسية: Catherine Noël Worlee)‏    معلومات شخصية الميلاد 21 نوفمبر 1762  الوفاة 10 ديسمبر 1834 (72 سنة)   باريس  مكان الدفن مقبرة مونبارناس  موا...

 

Порівняння розміру орбіти GPS, ГЛОНАСС, Галілео, Бейдоу-2 та Іридіуму, Міжнародної космічної станції, космічного телескопа Габбл та геостаціонарної орбіти (та орбіти захоронення) з радіаційними поясами Ван Аллена та Землею в масштабі. Орбіта Місяця приблизно в 9 разів біль...

 

Italo-Brazilian fencer Nathalie MoellhausenMoellhausen in 2014Personal informationBorn (1985-12-01) 1 December 1985 (age 38)Milan, ItalyHeight1.78 m (5 ft 10 in)Weight64 kg (141 lb)SportCountry Italy (2013) Brazil (2014-present)SportFencingWeaponÉpéeHandleft-handedPersonal coachDaniel Levavasseur, Laura Flessel-ColovicFIE rankingcurrent ranking Medal record Women's épée Representing  Brazil World Championships 2019 Budapest Individual Pan Ameri...

Kruzenshtern Die Kruzenshtern in Hamburg Die Kruzenshtern in Hamburg Schiffsdaten Flagge Deutsches Reich Deutsches ReichDeutsches Reich Deutsches ReichSowjetunion SowjetunionRussland Russland andere Schiffsnamen Padua Schiffstyp Viermastbark Rufzeichen DIRR 1926-1945UCVK 1946- Heimathafen Kaliningrad seit 1991 Reederei F. Laeisz bis 1939 Bauwerft Joh. C. Tecklenborg, Wesermünde[1] Baunummer 408 Kiellegung 24. Juni 1925[2] Stapellauf 11. Juni 1926 (24. Juni ...

 

Portuguese association football club Not to be confused with Vitória S.C., from Guimarães. This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (August 2020) (Learn how and when to remove this template message) Football clubVitória de SetúbalFull nameVitória Futebol Clube[1]Nickname(s)SadinosO Velho SenhorFounded20 November 1910; 113 years ago&...

 

Jacinto Guerrero y Torre Jacinto Guerrero y Torre (Ajofrín, Toledo, 16 augustus 1895 - Madrid, 15 september 1951) was een Spaans componist. Levensloop De vader van Guerrero y Torre was de dirigent van de Banda Municipal de Ajofrin en hij zorgde voor een goede muzikale opleiding. In 1904 vertrok de familie naar Toledo en Jacinto werd lid van het jongenskoor aan de kathedraal van Toledo, waar hij bij Lluis Ferré, de dirigent van dit koor, muzieklessen kreeg. Toen schreef hij al een Salve voor...

Main article: Lincoln Mark series Motor vehicle Continental Mark VII Lincoln Mark VIILincoln Mark VII LSCOverviewManufacturerLincoln (Ford)Production1983–April 1992AssemblyWixom, Michigan, United StatesDesignerJeff TeagueBody and chassisClassPersonal luxury carBody style2-door coupeLayoutFR layoutPlatformFord Fox platformRelatedFord MustangFord ThunderbirdMercury CougarPowertrainEngine4,942 cc (302 cu in) Windsor V82,443 cc (149 cu in) BMW M21 TD I6Tra...

 

For attitudes of various religions toward sex, see Religion and sexuality. 1993 studio album by VaiSex & ReligionStudio album by VaiReleasedJuly 27, 1993 (1993-07-27)[1]StudioMothership (Hollywood Hills)Genre Heavy metal hard rock instrumental rock Length59:18LabelRelativityProducerSteve VaiSteve Vai chronology Passion and Warfare(1990) Sex & Religion(1993) Alien Love Secrets(1995) Devin Townsend chronology Sex & Religion(1993) Heavy as a Really Heav...

 

Indian Kannada crime-action film by Jadesh Kumar GentlemanFilm posterDirected byJadesh Kumar HampiWritten byJadesh Kumar Hampi Santosh SKProduced byGuru DeshpandeStarringPrajwal Devraj Nishvika Naidu Sanchari VijayCinematographyMurali mohan kasthala & Aroor Sudhakar ShettyEdited byVenkatesh UDVMusic byB. Ajaneesh LoknathProductioncompanyGuru Deshpande Productions (G Cinemas)Release date 7 February 2020 (2020-02-07) Running time144 minutesCountryIndiaLanguageKannada Gentlema...

Toxin secreted by an animal Not to be confused with Poison. This article is about the class of biotoxins. For other uses, see Venom (disambiguation) and Venomous (disambiguation). Wasp stinger with a droplet of venom Venom or zootoxin is a type of toxin produced by an animal that is actively delivered through a wound by means of a bite, sting, or similar action.[1][2][3] The toxin is delivered through a specially evolved venom apparatus, such as fangs or a stinger, in ...

 

1997 British Grand Prix Race 9 of 17 in the 1997 Formula One World Championship Silverstone Circuit in its 1997 configurationRace detailsDate 13 July 1997Official name L RAC British Grand PrixLocation Silverstone Circuit, Silverstone, Northamptonshire and Buckinghamshire, EnglandCourse Permanent racing facilityCourse length 5.140 km (3.194 miles)Distance 59 laps, 303.260 km (188.437 miles)Scheduled distance 60 laps, 308.400 km (191.631 miles)Weather Sunny, Dry TrackPole positionDriver Jacques...

 

Zell am Neckar Stadt Esslingen am Neckar Wappen von Zell am Neckar Koordinaten: 48° 44′ N, 9° 22′ O48.7266666666679.3616666666667Koordinaten: 48° 43′ 36″ N, 9° 21′ 42″ O Einwohner: 4703 (30. Jun. 2016)[1] Eingemeindung: 1. Juli 1974 Postleitzahl: 73730 Vorwahl: 0711 Karte Lage von Zell in Esslingen am Neckar Zell aus nordwestlicher Sicht; im Hintergrund das Kraftwerk Altbach/Deizisau Zell ist ein Stadttei...

This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this template message) British TV series or programme Silent CryGenreCrime • ThrillerWritten bySimo...

 

American Sikh Cartoonist This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (March 2023) Vishavjit SinghBornWashington, D.C. Alma materUniversity of California, Santa BarbaraUC Berkeley School of Public Health OccupationCartoonist, software engineer Websitehttps://www.sikhtoons.com  Vishavjit Singh is an American cartoonist, author, and activist.[1][...

 

وازWΔZالملصق البريطاني الدعائي للفيلممعلومات عامةالصنف الفني جريمة رعبالموضوع قاتل متسلسل تاريخ الصدور30 يوليو 2007 (2007-07-30) (مهرجان شتوتغارت للأفلام الفنتازية)22 فبراير 2008 (2008-02-22) (المملكة المتحدة)مدة العرض 104 دقيقةاللغة الأصلية لغة إنجليزيةالبلد المملكة...

Motor vehicle Mitsuoka GalueA Mk I GalueOverviewManufacturerMitsuokaProduction1996-presentBody and chassisClassFull-size luxury carBody style4-door sedan2-door convertibleLayoutFR (Galue-I,II,III and GALUE CONVERTIBLE)F4 (Galue LIMOUSINE S50, Galue Gen.4)FF (Galue 204, Galue Gen.4 & 5)RelatedNissan Crew (Galue-I)Nissan Cedric Y34 (Galue-II)Nissan Fuga (Y50) (Galue-III)Ford Mustang (Galue Convertible)Toyota Corolla Axio (Galue 204 / Galue Classic)Nissan Teana J32 (Galue Gen.4)Nissan T...

 

Nova CinemaZahájení vysílání1. prosince 2007ProvozovatelTV Nova s.r.o.ŘeditelAntoanella UngureanuFormát obrazu4 : 316 : 9SloganŽijeme filmem!Staniční hlasTomáš GibišJitka MoučkováJan VondráčekZeměČesko ČeskoSídloTV Nova(areál Barrandov Studio)Kříženeckého nám. 1078/5aPraha 5, Hlubočepy152 00 Praha 52JazykčeštinaSesterské kanályNovaNova ActionNova FunNova GoldNova LadyNova Sport 1Nova Sport 2Nova Sport 3Nova Sport 4Nova InternationalDostupnost je ve v...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!