Newton's theorem about ovals

In mathematics, Newton's theorem about ovals states that the area cut off by a secant of a smooth convex oval is not an algebraic function of the secant.

Isaac Newton stated it as lemma 28 of section VI of book 1 of Newton's Principia, and used it to show that the position of a planet moving in an orbit is not an algebraic function of time. There has been some controversy about whether or not this theorem is correct because Newton did not state exactly what he meant by an oval, and for some interpretations of the word oval the theorem is correct, while for others it is false. If "oval" means merely a continuous closed convex curve, then there are counterexamples, such as triangles or one of the lobes of Huygens lemniscate y2 = x2 − x4, while Arnold (1989) pointed that if "oval" an infinitely differentiable convex curve then Newton's claim is correct and his argument has the essential steps of a rigorous proof.

Vassiliev (2002) generalized Newton's theorem to higher dimensions.

Statement

The lemniscate of Gerono or Huygens; the area cut off by a secant is algebraic, but the lemniscate is not smooth at the origin

An English translation Newton's original statement (Newton 1962, lemma 28 section 6 book I) is:

"There is no oval figure whose area, cut off by right lines at pleasure, can be universally found by means of equations of any number of finite terms and dimensions."

In modern mathematical language, Newton essentially proved the following theorem:

There is no convex smooth (meaning infinitely differentiable) curve such that the area cut off by a line ax + by = c is an algebraic function of a, b, and c.

In other words, "oval" in Newton's statement should mean "convex smooth curve". The infinite differentiability at all points is necessary: For any positive integer n there are algebraic curves that are smooth at all but one point and differentiable n times at the remaining point for which the area cut off by a secant is algebraic.

Newton observed that a similar argument shows that the arclength of a (smooth convex) oval between two points is not given by an algebraic function of the points.

Newton's proof

If the oval is a circle centered at the origin, then the spiral constructed by Newton is an Archimedean spiral.

Newton took the origin P inside the oval, and considered the spiral of points (rθ) in polar coordinates whose distance r from P is the area cut off by the lines from P with angles 0 and θ. He then observed that this spiral cannot be algebraic as it has an infinite number of intersections with a line through P, so the area cut off by a secant cannot be an algebraic function of the secant.

This proof requires that the oval and therefore the spiral be smooth; otherwise the spiral might be an infinite union of pieces of different algebraic curves. This is what happens in the various "counterexamples" to Newton's theorem for non-smooth ovals.

References

  • Arnold, V. I. (1989), "Topological proof of the transcendence of the abelian integrals in Newton's Principia", Istoriko-Matematicheskie Issledovaniya (31): 7–17, ISSN 0136-0949, MR 0993175
  • Arnold, V. I.; Vasilev, V. A. (1989), "Newton's Principia read 300 years later", Notices of the American Mathematical Society, 36 (9): 1148–1154, ISSN 0002-9920, MR 1024727
  • Newton, I. (1962), Florian Cajori (ed.), Principia Vol. I The Motion of Bodies, translated by Andrew Motte, Berkeley: University of California Press, ISBN 978-0-520-00928-8 Alternative translation of earlier (2nd) edition of Newton's Principia.
  • Pesic, Peter (2001), "The validity of Newton's Lemma 28", Historia Mathematica, 28 (3): 215–219, doi:10.1006/hmat.2001.2321, ISSN 0315-0860, MR 1849799
  • Pourciau, Bruce (2001), "The integrability of ovals: Newton's Lemma 28 and its counterexamples", Archive for History of Exact Sciences, 55 (5): 479–499, doi:10.1007/s004070000034, ISSN 0003-9519, MR 1827869, S2CID 119853564
  • Vassiliev, V. A. (2002), Applied Picard-Lefschetz theory, Mathematical Surveys and Monographs, vol. 97, Providence, R.I.: American Mathematical Society, doi:10.1090/surv/097, ISBN 978-0-8218-2948-6, MR 1930577

Read other articles:

Громадя́нське суспі́льство — суспільство, в основі якого лежить розгалужена мережа незалежних від держави інституцій, об’єднань та організацій, створених самими громадянами для виявлення й здійснення різних громадських ініціатив, задоволення своїх суспільних потреб

 

Ernst von Rüchel (1754–1823) Ernst Wilhelm Friedrich Philipp von Rüchel (* 21. Juli 1754 in Ziezeneff; † 14. Januar 1823 in Haseleu im Landkreis Regenwalde) war ein preußischer General der Infanterie. Inhaltsverzeichnis 1 Leben 2 Historische Einordnung 3 Wappen 4 Familie 5 Literatur 6 Weblinks 7 Einzelnachweise Leben Ernst war der Sohn des preußischen Offiziers und Herrn auf Ziezeneff Adam Georg von Rüchel (1692–1757) und dessen Ehefrau Agnes Auguste Hedwig, geborene von Schnell. N...

 

Regierungsbezirk Aurich Bestandszeitraum 1885–1978 Zugehörigkeit 1885–1946 Provinz Hannover1946–1978 Niedersachsen Sitz Aurich Fläche 3131 km² (1977)[1] Einwohner 423.700 (1977)[1] Bevölkerungsdichte 132 Einw./km² (1977) Der Regierungsbezirk Aurich war ein Regierungsbezirk der preußischen Provinz Hannover und des Landes Niedersachsen. Er umfasste die Region Ostfriesland und bestand von 1885 bis 1978. Inhaltsverzeichnis 1 Geschichte 2 Verwaltungsgliederung 3 Landdro...

JJ RizalJJ RizalLahirJJ Rizal12 Februari 1974 (umur 49)Jakarta, IndonesiaPekerjaanSejarawanTahun aktif2000Situs webwww.komunitasbambu.id JJ Rizal, S.S. adalah sejarawan yang terlibat sebagai intelektual publik dengan aktif menyikapi persoalan-persoalan di tengah masyarakat melalui tulisan-tulisan di berbagai media cetak dan online serta nara sumber untuk beberapa stasiun radio dan TV. Ia menyelesaikan kuliah pada 1998 di Jurusan Sejarah, Fakultas Sastra Universitas Indonesia (FSUI),...

 

Grzegorz Zengota Data i miejsce urodzenia 29 sierpnia 1988 Zielona Góra Informacje klubowe Klub liga duńska: Region Varde Elitesportliga polska: Unia Lesznoliga szwedzka: Rospiggarna Hallstavik Kariera seniorska Lata Klub Liga polska 2004–2011 Falubaz Zielona Góra 2012 Włókniarz Częstochowa 2013–2017 Unia Leszno 2018 Falubaz Zielona Góra 2019–2020 Motor Lublin 2021 Polonia Bydgoszcz 2022 ROW Rybnik 2023- Unia Leszno Liga duńska 2008 Holsted Speedway 2010 Brovst 2011–2012 ...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يناير 2022) هذه القائمة غير مكتملة. فضلاً ساهم في تطويرها بإضافة مزيد من المعلومات ولا تنسَ الاستشهاد بمصادر موثوق به...

Club PortugaleteDatos generalesNombre Club PortugaleteApodo(s) Portu, JarrillerosFundación 1909 (114 años)Refundación 12 de julio de 1944 (79 años)Presidente Eduardo RivacobaEntrenador Iban FagoagaInstalacionesEstadio La FloridaCapacidad 5000 espectadoresUbicación Calle Doctor José Zaldua s/n, Portugalete País Vasco EspañaInauguración 25 de diciembre de 1951 (71 años) Titular Alternativo Última temporadaLiga Tercera División (Grupo IV(2019-20) 1º Copa Copa del Rey(...

 

Changkat KeruingChangkat Keruing StreetCountryMalaysiaStatePerakEstablished1900sKetinggian56 m (183,7 ft)Zona waktuUTC+8 (MST) • Musim panas (DST)Not observed Changkat Keruing terletak di Sitiawan, Perak. Keruing ialah sejenis pohon yang mempunyai nilai uyang tinggi . Changkat berarti tanah yang terangkat atau tanah tinggi tetapi tidak setinggi bukit. Referensi lbs Perak Darul RidzuanDaerah Kinta • Larut, Matang dan Selama • Hilir Perak • Manjung • Batang Pa...

 

Railway lines utilised by timber industry in Western Australia Timber train in Manjimup Pemberton area in the 1940s The network of railway lines in Western Australia associated with the timber and firewood industries is as old as the mainline railway system of the former Western Australian Government Railways system. Timber railways There is a range of terminology related to the timber railways - they have been known as logging railways, timber trams, and other names. The dominant feature is ...

У этого термина существуют и другие значения, см. Вязовка. СелоВязовка 52°00′58″ с. ш. 44°35′43″ в. д.HGЯO Страна  Россия Субъект Федерации Саратовская область Муниципальный район Екатериновский Сельское поселение Сластухинское муниципальное образование Истори...

 

Politics of Myanmar Constitution 2008 Constitution Constitutional Tribunal Chairman: Than Kyaw National Defence and Security Council Government President (list) Myint Swe (acting) State Administration Council Chairman: Min Aung Hlaing Vice Chairman: Soe Win Vice-President First: Myint Swe Second: Henry Van Thio Prime Minister (list) Min Aung Hlaing Deputy Prime Minister Soe Win Mya Tun Oo Tin Aung San Soe Htut Win Shein Cabinet Provisional Government Legislature (dissolved) House of Nationali...

 

Irish film director and writer This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Montgomery Tully – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this template message) Montgomery TullyMontgomery TullyBornGeoffrey Montgomery Tully[1](1904-05-06)6 May 1904Died10 O...

2011 Polish filmThe MoleFilm posterPolishKret Directed byRafael LewandowskiStarringBorys Szyc Marian DziędzielRelease dates June 2011 (2011-06) (Gdynia) 5 August 2011 (2011-08-05) Running time107 minutesCountryPolandLanguagePolish The Mole (Polish: Kret) is a 2011 Polish drama film directed by Rafael Lewandowski.[1] The film premiered at the 2011 Gdynia Film Festival.[2] Cast Borys Szyc as Pawel Kowal Marian Dziędziel as Zygmunt Kowal Magdalena C...

 

Azerbaijani politician Inam Karimovİnam KərimovChief Justice of the Supreme CourtIncumbentAssumed office 4 April 2023PresidentIlham AliyevPreceded byRamiz RzayevMinister of AgricultureIn office21 April 2018 – 4 April 2023Preceded byHeydar AsadovSucceeded byMajnun MammadovChairman of the State Agency for Public Service and Social Innovations under the President of Republic of AzerbaijanIn office7 September 2012 – 21 April 2018PresidentIlham AliyevPreceded byPosition...

 

Flora and fauna in Burundi Landscapes of Burundi.Bujumbura on the banks of Lake Tanganyika. The wildlife of Burundi is composed of its flora and fauna. The small, landlocked country is home to 2,950 species of plants, 596 birds, 163 species of mammals, 52 species of reptiles, 56 species of amphibians, and 215 fish species.[1] The wildlife has been drastically reduced in recent years, mainly on account of intense population pressure, conversion of large areas of forest into agricultura...

DMX

American rapper and actor (1970–2021) For other uses, see DMX (disambiguation). Not to be confused with Davy DMX. DMXDMX in 2001BornEarl Simmons(1970-12-18)December 18, 1970Mount Vernon, New York, U.S.DiedApril 9, 2021(2021-04-09) (aged 50)White Plains, New York, U.S.Burial placeOakland Cemetery, Yonkers, New York, U.S.Other namesDark Man XXDivine Master of the UnknownOccupationsRappersongwriteractorYears active1985–2021Spouse Tashera Simmons ​ ​(m. ...

 

Mother Mary Cecilia BaillyTitleSuperior generalPersonalBornEleanor Cecilia Kinzie Bailly(1815-06-02)June 2, 1815Mackinac County, MichiganDiedAugust 2, 1898(1898-08-02) (aged 83)Terre Haute, IndianaResting placeSisters of Providence Convent Cemetery, Saint Mary-of-the-Woods, IndianaReligionCatholicInstituteSisters of Providence of Saint Mary-of-the-WoodsSenior postingPeriod in office1856–1868PredecessorSaint Mother Theodore GuerinSuccessorMother Anastasie Brown Mother Mary Cecilia ...

 

Ritual vase with a spout used in Tibetan Buddhist rituals Gilt bumpa with image of Buddha Amitābha. Nepal, 17th century. The bumpa' (Standard Tibetan: བུམ་པ་), or pumpa, is a ritual ewer or vase with a spout used in Tibetan Buddhist rituals and empowerment. It is believed in some contexts to be the vessel for the expanse of the universe. There are two kinds of bumpa: the tso bum, or main vase, and the le bum or activity vase. The main vase is usually placed in the center of the m...

American pornographic film actress Amber RayneRayne attending the AVN Awards Show in Las Vegas, Nevada, on January 9, 2010BornMeghan Wren[1](1984-09-19)September 19, 1984Detroit, Michigan, U.S.DiedApril 2, 2016(2016-04-02) (aged 31)Sun Valley, Los Angeles, California, U.S.Years active2005–2015 Meghan Wren (September 19, 1984 – April 2, 2016),[1][2][3] known professionally as Amber Rayne, was an American pornographic actress. Biography Rayne was bo...

 

Lake in the South Island of New Zealand For the town on its shore, see Lake Tekapo (town). Lake TekapoTakapō (Māori)Lake TekapoLake TekapoLocationMackenzie District, Canterbury region, South IslandCoordinates43°53′S 170°31′E / 43.883°S 170.517°E / -43.883; 170.517Primary inflowsGodley River (north), Macauley River (north), Mistake River (west), Cass River (west)[1]Primary outflowsTekapo RiverCatchment area1,463 km2 (565 sq mi)[...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!