While many theoretical concepts and applications involve single vectors, mathematicians such as Hermann Grassmann considered structures involving pairs, triplets, and multivectors that generalize vectors. With multiple combinational possibilities, the space of multivectors expands to 2n dimensions, where n is the dimension of the relevant vector space.[2] The determinant can be formulated abstractly using the structures of multilinear algebra.
Multilinear algebra appears in the study of the mechanical response of materials to stress and strain, involving various moduli of elasticity. The term "tensor" describes elements within the multilinear space due to its added structure. Despite Grassmann's early work in 1844 with his Ausdehnungslehre, which was also republished in 1862, the subject was initially not widely understood, as even ordinary linear algebra posed many challenges at the time.
In 1958, Nicolas Bourbaki included a chapter on multilinear algebra titled "Algèbre Multilinéaire" in his series Éléments de mathématique, specifically within the algebra book. The chapter covers topics such as bilinear functions, the tensor product of two modules, and the properties of tensor products.[6]
Applications
Multilinear algebra concepts find applications in various areas, including:
^Schlegel, Victor (2018). System der Raumlehre: Nach den Prinzipien der Grassmann'schen Ausdehnungslehre und als Einleitung in Dieselbe; Geometrie; Die Gebiete des Punktes, der Geraden, der Ebene. Forgotten Books. ISBN978-0-364-22177-8.