Magnetohydrodynamic turbulence

Magnetohydrodynamic turbulence concerns the chaotic regimes of magnetofluid flow at high Reynolds number. Magnetohydrodynamics (MHD) deals with what is a quasi-neutral fluid with very high conductivity. The fluid approximation implies that the focus is on macro length-and-time scales which are much larger than the collision length and collision time respectively.

Incompressible MHD equations

The incompressible MHD equations for constant mass density, , are

where

  • u represents the velocity,
  • B represent the magnetic field,
  • p represents the total pressure (thermal+magnetic) fields,
  • is the kinematic viscosity and
  • represents magnetic diffusivity.

The third equation is the incompressibility condition. In the above equation, the magnetic field is in Alfvén units (same as velocity units).

The total magnetic field can be split into two parts: (mean + fluctuations).

The above equations in terms of Elsässer variables () are

where . Nonlinear interactions occur between the Alfvénic fluctuations .

The important nondimensional parameters for MHD are

The magnetic Prandtl number is an important property of the fluid. Liquid metals have small magnetic Prandtl numbers, for example, liquid sodium's is around . But plasmas have large .

The Reynolds number is the ratio of the nonlinear term of the Navier–Stokes equation to the viscous term. While the magnetic Reynolds number is the ratio of the nonlinear term and the diffusive term of the induction equation.

In many practical situations, the Reynolds number of the flow is quite large. For such flows typically the velocity and the magnetic fields are random. Such flows are called to exhibit MHD turbulence. Note that need not be large for MHD turbulence. plays an important role in dynamo (magnetic field generation) problem.

The mean magnetic field plays an important role in MHD turbulence, for example it can make the turbulence anisotropic; suppress the turbulence by decreasing energy cascade etc. The earlier MHD turbulence models assumed isotropy of turbulence, while the later models have studied anisotropic aspects. In the following discussions will summarize these models. More discussions on MHD turbulence can be found in Biskamp,[1] Verma.[2] and Galtier.

Isotropic models

Iroshnikov[3] and Kraichnan[4] formulated the first phenomenological theory of MHD turbulence. They argued that in the presence of a strong mean magnetic field, and wavepackets travel in opposite directions with the phase velocity of , and interact weakly. The relevant time scale is Alfven time . As a results the energy spectra is

where is the energy cascade rate.

Later Dobrowolny et al.[5] derived the following generalized formulas for the cascade rates of variables:

where are the interaction time scales of variables.

Iroshnikov and Kraichnan's phenomenology follows once we choose .

Marsch[6] chose the nonlinear time scale as the interaction time scale for the eddies and derived Kolmogorov-like energy spectrum for the Elsasser variables:

where and are the energy cascade rates of and respectively, and are constants.

Matthaeus and Zhou[7] attempted to combine the above two time scales by postulating the interaction time to be the harmonic mean of Alfven time and nonlinear time.

The main difference between the two competing phenomenologies (−3/2 and −5/3) is the chosen time scales for the interaction time. The main underlying assumption in that Iroshnikov and Kraichnan's phenomenology should work for strong mean magnetic field, whereas Marsh's phenomenology should work when the fluctuations dominate the mean magnetic field (strong turbulence).

However, as we will discuss below, the solar wind observations and numerical simulations tend to favour −5/3 energy spectrum even when the mean magnetic field is stronger compared to the fluctuations. This issue was resolved by Verma[8] using renormalization group analysis by showing that the Alfvénic fluctuations are affected by scale-dependent "local mean magnetic field". The local mean magnetic field scales as , substitution of which in Dobrowolny's equation yields Kolmogorov's energy spectrum for MHD turbulence.

Renormalization group analysis have been also performed for computing the renormalized viscosity and resistivity. It was shown that these diffusive quantities scale as that again yields energy spectra consistent with Kolmogorov-like model for MHD turbulence. The above renormalization group calculation has been performed for both zero and nonzero cross helicity.

The above phenomenologies assume isotropic turbulence that is not the case in the presence of a mean magnetic field. The mean magnetic field typically suppresses the energy cascade along the direction of the mean magnetic field.[9]

Anisotropic models

Mean magnetic field makes turbulence anisotropic. This aspect has been studied in last two decades. In the limit , Galtier et al.[10] showed using kinetic equations that

where and are components of the wavenumber parallel and perpendicular to mean magnetic field. The above limit is called the weak turbulence limit.

Under the strong turbulence limit, , Goldereich and Sridhar[11] argue that ("critical balanced state") which implies that

The above anisotropic turbulence phenomenology has been extended for large cross helicity MHD.

Solar wind observations

Solar wind plasma is in a turbulent state. Researchers have calculated the energy spectra of the solar wind plasma from the data collected from the spacecraft. The kinetic and magnetic energy spectra, as well as are closer to compared to , thus favoring Kolmogorov-like phenomenology for MHD turbulence.[12][13] The interplanetary and interstellar electron density fluctuations also provide a window for investigating MHD turbulence.

Numerical simulations

The theoretical models discussed above are tested using the high resolution direct numerical simulation (DNS). Number of recent simulations report the spectral indices to be closer to 5/3.[14] There are others that report the spectral indices near 3/2. The regime of power law is typically less than a decade. Since 5/3 and 3/2 are quite close numerically, it is quite difficult to ascertain the validity of MHD turbulence models from the energy spectra.

Energy fluxes can be more reliable quantities to validate MHD turbulence models. When (high cross helicity fluid or imbalanced MHD) the energy flux predictions of Kraichnan and Iroshnikov model is very different from that of Kolmogorov-like model. It has been shown using DNS that the fluxes computed from the numerical simulations are in better agreement with Kolmogorov-like model compared to Kraichnan and Iroshnikov model.[15]

Anisotropic aspects of MHD turbulence have also been studied using numerical simulations. The predictions of Goldreich and Sridhar[11] () have been verified in many simulations.

Energy transfer

Energy transfer among various scales between the velocity and magnetic field is an important problem in MHD turbulence. These quantities have been computed both theoretically and numerically.[2] These calculations show a significant energy transfer from the large scale velocity field to the large scale magnetic field. Also, the cascade of magnetic energy is typically forward. These results have critical bearing on dynamo problem.


There are many open challenges in this field that hopefully will be resolved in near future with the help of numerical simulations, theoretical modelling, experiments, and observations (e.g., solar wind).

See also

References

  1. ^ D. Biskamp (2003), Magnetohydrodynamical Turbulence, (Cambridge University Press, Cambridge.)
  2. ^ a b Verma, Mahendra K. (2004). "Statistical theory of magnetohydrodynamic turbulence: recent results". Physics Reports. 401 (5–6): 229–380. arXiv:nlin/0404043. Bibcode:2004PhR...401..229V. doi:10.1016/j.physrep.2004.07.007. ISSN 0370-1573. S2CID 119352240.
  3. ^ P. S. Iroshnikov (1964), Turbulence of a Conducting Fluid in a Strong Magnetic Field, Soviet Astronomy, 7, 566.
  4. ^ Kraichnan, Robert H. (1965). "Inertial-Range Spectrum of Hydromagnetic Turbulence". Physics of Fluids. 8 (7). AIP Publishing: 1385. Bibcode:1965PhFl....8.1385K. doi:10.1063/1.1761412. ISSN 0031-9171.
  5. ^ Dobrowolny, M.; Mangeney, A.; Veltri, P. (1980-07-14). "Fully Developed Anisotropic Hydromagnetic Turbulence in Interplanetary Space". Physical Review Letters. 45 (2). American Physical Society (APS): 144–147. Bibcode:1980PhRvL..45..144D. doi:10.1103/physrevlett.45.144. ISSN 0031-9007.
  6. ^ E. Marsch (1990), Turbulence in the solar wind, in: G. Klare (Ed.), Reviews in Modern Astronomy, Springer, Berlin, p. 43.
  7. ^ Matthaeus, William H.; Zhou, Ye (1989). "Extended inertial range phenomenology of magnetohydrodynamic turbulence". Physics of Fluids B: Plasma Physics. 1 (9). AIP Publishing: 1929–1931. Bibcode:1989PhFlB...1.1929M. doi:10.1063/1.859110. ISSN 0899-8221.
  8. ^ Verma, Mahendra K. (1999). "Mean magnetic field renormalization and Kolmogorov's energy spectrum in magnetohydrodynamic turbulence". Physics of Plasmas. 6 (5). AIP Publishing: 1455–1460. arXiv:chao-dyn/9803021. Bibcode:1999PhPl....6.1455V. doi:10.1063/1.873397. ISSN 1070-664X. S2CID 2218981.
  9. ^ Shebalin, John V.; Matthaeus, William H.; Montgomery, David (1983). "Anisotropy in MHD turbulence due to a mean magnetic field". Journal of Plasma Physics. 29 (3). Cambridge University Press (CUP): 525–547. Bibcode:1983JPlPh..29..525S. doi:10.1017/s0022377800000933. hdl:2060/19830004728. ISSN 0022-3778. S2CID 122509800.
  10. ^ Galtier, S.; Nazarenko, S. V.; Newell, A. C.; Pouquet, A. (2000). "A weak turbulence theory for incompressible magnetohydrodynamics" (PDF). Journal of Plasma Physics. 63 (5). Cambridge University Press (CUP): 447–488. arXiv:astro-ph/0008148. Bibcode:2000JPlPh..63..447G. doi:10.1017/s0022377899008284. ISSN 0022-3778. S2CID 15528846.
  11. ^ a b Goldreich, P.; Sridhar, S. (1995). "Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence" (PDF). The Astrophysical Journal. 438. IOP Publishing: 763. Bibcode:1995ApJ...438..763G. doi:10.1086/175121. ISSN 0004-637X.
  12. ^ Matthaeus, William H.; Goldstein, Melvyn L. (1982). "Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind". Journal of Geophysical Research. 87 (A8). American Geophysical Union (AGU): 6011. Bibcode:1982JGR....87.6011M. doi:10.1029/ja087ia08p06011. hdl:11603/30515. ISSN 0148-0227.
  13. ^ D. A. Roberts, M. L. Goldstein (1991), Turbulence and waves in the solar wind, Rev. Geophys., 29, 932.
  14. ^ Müller, Wolf-Christian; Biskamp, Dieter (2000-01-17). "Scaling Properties of Three-Dimensional Magnetohydrodynamic Turbulence". Physical Review Letters. 84 (3). American Physical Society (APS): 475–478. arXiv:physics/9906003. Bibcode:2000PhRvL..84..475M. doi:10.1103/physrevlett.84.475. ISSN 0031-9007. PMID 11015942. S2CID 43131956.
  15. ^ Verma, M. K.; Roberts, D. A.; Goldstein, M. L.; Ghosh, S.; Stribling, W. T. (1996-10-01). "A numerical study of the nonlinear cascade of energy in magnetohydrodynamic turbulence". Journal of Geophysical Research: Space Physics. 101 (A10). American Geophysical Union (AGU): 21619–21625. Bibcode:1996JGR...10121619V. doi:10.1029/96ja01773. hdl:11603/30574. ISSN 0148-0227.

Read other articles:

Former railway station in England FacitThe site of the station in May 2008General informationLocationWhitworth, RossendaleEnglandGrid referenceSD887190Platforms2Other informationStatusDisusedHistoryOriginal companyLancashire and Yorkshire RailwayPre-groupingLancashire and Yorkshire RailwayPost-groupingLondon, Midland and Scottish RailwayKey dates1 November 1870 (1870-11-01)Opened16 June 1947 (1947-06-16)Closed for passengers12 August 1963closed for freight Facit ...

 

Gunung Api PichinchaRuku Pichincha terlihat dari jalan setapak di QuitoTitik tertinggiKetinggian4.784 m (15.696 ft)Puncak1.652 m (5.420 ft)Masuk dalam daftarUltraKoordinat0°10′16″S 78°35′53″W / 0.171°S 78.598°W / -0.171; -78.598Koordinat: 0°10′16″S 78°35′53″W / 0.171°S 78.598°W / -0.171; -78.598 GeografiGunung Api PichinchaQuito, Pichincha, EkuadorPegununganAndesGeologiUsia batuanQuaternaryJenis ...

 

American basketball player Jasmine ThomasThomas in 2019No. 15 – Los Angeles SparksPositionPoint guardLeagueWNBAPersonal informationBorn (1989-09-30) September 30, 1989 (age 34)Fairfax, Virginia, U.S.Listed height5 ft 9 in (1.75 m)Listed weight143 lb (65 kg)Career informationHigh schoolOakton (Vienna, Virginia)CollegeDuke (2007–2011)WNBA draft2011: 1st round, 12th overall pickSelected by the Seattle StormPlaying career2011–presentCareer history2011...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2023) فالينت ليدي فالينت ليدي في 2022 تأريخ(باهاماس) اسم السفينة: فالينت ليديالمالك: مجموعة فيرجن بين كابيتالالمشغّل: فيرجن فوياجيزحوض بناء السفن: فينكانتييري إيطال

 

Het circuit van Tubbergen in 1957 Het circuit van Tubbergen was een stratencircuit dat bestond uit een driehoek van wegen tussen Tubbergen, Fleringen en Albergen. Er werden motorraces gehouden van 1946 tot en met 1984.[1] Tegenwoordig Sinds 2002 komen de coureurs uit de jaren 70/80 elk jaar op tweede pinksterdag, met uitzondering van 2013, weer terug naar Tubbergen[2]. De race vindt zo dicht mogelijk plaats bij het originele circuit, alleen vinden de races nu plaats op het Tub...

 

出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。記事の信頼性向上にご協力をお願いいたします。(2013年7月) この項目では、生物学・医学的な性転換について説明しています。フィクションにおける性転換については「TSF (ジャンル)」をご覧ください。 性転換(せいてんかん)とは、ある生物個体の性別が生涯のうちに変

Pour les articles homonymes, voir N27 et Route nationale 27. Cet article est une ébauche concernant la route. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Route nationale 27 La RN 27 sur le viaduc de la Scie Historique Déclassement D 927 (entre Maromme et l'A29 (Tôtes)) Caractéristiques Direction sud / nord Extrémité sud à Maromme (avant déclassement) Intersections à Tôtes aux Vertus Territoire travers

 

Kanō Tan'yūPotret Kanō Tan'yū, dilukis oleh muridnya Momoda Ryûei.Lahir4 Maret 1602Meninggal4 November 1674KebangsaanJepangGerakan politikSekolah seni Kano Kanō Tan'yū (狩野 探幽code: ja is deprecated , 4 March 1602–4 November 1674) adalah seorang pelukis berkebangsaan Jepang yang berasal dari sekolah seni Kanō. Kanō Tan'yū mungkin adalah pelukis paling terkenal dari sekolah seni Kanō. Banyak dari lukisan Kanō Tan'yū yang selamat sampai sekarang.[1] Biografi Tem...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Syekh Muhammad Mehmet Adil lahir pada 29 Maret 1957 di Damaskus . Ia adalah penerus dan putra tertua dari Sultanul Auliya Syaikh Muhammad Nazim Adil al-Haqqani ar-Rabbani (QS) dan Hajjah Amina Adil Sultan Hanim. Saat ini ia menjabat sebagai pemimpin sp...

Constituency of the Karnataka legislative assembly in India For the constituency in Chhattisgarh, see Bijapur Assembly constituency. For the defunct constituency in Karnataka, see Bijapur, Karnataka Assembly constituency. Bijapur CityConstituency for the Karnataka Legislative AssemblyConstituency detailsCountryIndiaRegionSouth IndiaStateKarnatakaDistrictBijapurLS constituencyBijapurMember of Legislative Assembly16th Karnataka Legislative AssemblyIncumbent Basangouda Patil Yatnal PartyBharatiy...

 

سيزار فرانك (بالفرنسية: César Franck)‏  معلومات شخصية اسم الولادة (بالفرنسية: César Auguste Jean Guillaume Hubert Franck)‏  الميلاد 10 ديسمبر 1822(1822-12-10)[1][2]لييج، مملكة الأراضي المنخفضة المتحدة[3] الوفاة 8 نوفمبر 1890 (67 سنة) [1][2]باريس[4] سبب الوفاة انصباب جنبي  مكان الدفن ...

 

Spanish general (1770–1843) In this Spanish name, the first or paternal surname is Álava and the second or maternal family name is Esquivel. The Most ExcellentMiguel Ricardo de ÁlavaKCB MWOPortrait by George Dawe, 1818Prime Minister of SpainIn office14 September 1835 – 25 September 1835MonarchIsabella IIPreceded byThe Count of TorenoSucceeded byJuan Álvarez Mendizábal Personal detailsBorn7 July 1770Vitoria-Gasteiz, Álava, SpainDied14 July 1843(1843-07-14) (aged ...

Bhakti Tirtha SwamiKrishnapadaPersonalBornFebruary 25, 1950DiedJune 27, 2005ReligionHinduismSectGaudiya VaishnavismOther namesJohn E. Favors, Toshombe Abdul, Ghanasyama Dasa (pre-sannyasa), Swami KrishnapadaOrderSannyasaPhilosophyAchintya Bheda AbhedaBhakti yogaReligious careerPredecessorA.C. Bhaktivedanta Swami PrabhupadaPostISKCON Guru, SannyasiWebsiteOfficial Site Part of a series onVaishnavism Supreme deityMahavishnu Vishnu / Krishna / Rama Important deities Dashavatara Matsya Kurma ...

 

Shlomo HillelJabatan kementerianFaksi yang diwakili dalam KnessetJabatan lain Informasi pribadiLahir(1923-04-23)23 April 1923Baghdad, IrakMeninggal8 Februari 2021(2021-02-08) (umur 97)[1]Sunting kotak info • L • B Shlomo Hillel (Ibrani: שלמה הלל, 23 April 1923 – 8 Februari 2021) adalah seorang diplomat dan politikus Israel kelahiran Irak yang menjabat sebagai Jurubicara Knesset, Menteri Kepolisian, Menteri Urusan Dalam Negeri, dan duta bes...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Eat Lead: The Return of Matt Hazard – news · newspapers · books · scholar · JSTOR (February 2023) (Learn how and when to remove this template message) 2009 video gameDeveloper(s)Vicious Cycle SoftwarePublisher(s)D3 PublisherProducer(s)Bryan WestDesigner(s)David...

Radio station in Mount Pleasant, UtahKKUTMount Pleasant, UtahBroadcast areaProvo, UtahFrequency93.7 MHz (HD Radio)Branding93.7 The WolfProgrammingFormatCountrySubchannelsHD2: Soft AC Classy FMHD3: Classic hits Flashback 96.7OwnershipOwnerMid-Utah Radio(Sanpete County Broadcasting Co.)Sister stationsKMTI, KMXD, KUTC, KSVC, KWUTHistoryFirst air dateJanuary 26, 1981 (as KKWZ)Former call signsKKWZ (1981-1997)KCYQ (1997-2005)KLGL (2005-2012)KUTC (2012-2016)[1]Technical informationFacility ...

 

Irish Anglican bishop (1729–1789) William Preston, by or after Gilbert Stuart William Preston, D.D. (1729 (1729) – (1789-04-19)19 April 1789) was an Irish Anglican bishop.[1][2][3] Life William Preston was the son of John Preston of Hincaster, Westmorland, by his third wife Ann.[3] He was educated at Heversham Grammar School and admitted a sizar at Trinity College, Cambridge in 1749 at the age of 19. He graduated B.A. in 1753, M.A. in 1756. He became a...

 

Alar ligamentMembrana tectoria, transverse, and alar ligaments. Alar ligament labeled at center rightDetailsFromSides of the dens (on the axis, or the second cervical vertebra)ToTubercles on the medial side of the occipital condyleIdentifiersLatinLigamenta alariaTA98A03.2.04.002TA21695FMA71395Anatomical terminology[edit on Wikidata] In anatomy, the alar ligaments are ligaments which connect the dens (a bony protrusion on the second cervical vertebra) to tubercles on the medial side of the...

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 19 de enero de 2019. Armand Louis de Gontaut (13 de abril de 1747-31 de diciembre de 1793), duque de Lauzun, posteriormente duque de Biron, comúnmente denominado Biron por los historiadores, fue un soldado y político francés, conocido por sus intervenciones en la Guerra de Independencia de los Estados Unidos y en la Revolución francesa. Armand Louis de Gontaut Información...

 

  Примеры поваренных книгОбложка немецкой поваренной книги, изданной в 1900 году.Американская поваренная книга 1912 годаФронтиспис раннего издания поваренной книги Апиция, принадлежавшего Мартину Лютеру«Современная кухня для частных семей» (Лондон, 1845). Глава 2 «Рыба».К...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!