Magnetic quantum number

In atomic physics, a magnetic quantum number is a quantum number used to distinguish quantum states of an electron or other particle according to its angular momentum along a given axis in space. The orbital magnetic quantum number (ml or m[a]) distinguishes the orbitals available within a given subshell of an atom. It specifies the component of the orbital angular momentum that lies along a given axis, conventionally called the z-axis, so it describes the orientation of the orbital in space. The spin magnetic quantum number ms specifies the z-axis component of the spin angular momentum for a particle having spin quantum number s. For an electron, s is 12, and ms is either +12 or −12, often called "spin-up" and "spin-down", or α and β.[1][2] The term magnetic in the name refers to the magnetic dipole moment associated with each type of angular momentum, so states having different magnetic quantum numbers shift in energy in a magnetic field according to the Zeeman effect.[2]

The four quantum numbers conventionally used to describe the quantum state of an electron in an atom are the principal quantum number n, the azimuthal (orbital) quantum number , and the magnetic quantum numbers ml and ms. Electrons in a given subshell of an atom (such as s, p, d, or f) are defined by values of (0, 1, 2, or 3). The orbital magnetic quantum number takes integer values in the range from to , including zero.[3] Thus the s, p, d, and f subshells contain 1, 3, 5, and 7 orbitals each. Each of these orbitals can accommodate up to two electrons (with opposite spins), forming the basis of the periodic table.

Other magnetic quantum numbers are similarly defined, such as mj for the z-axis component the total electronic angular momentum j,[1] and mI for the nuclear spin I.[2] Magnetic quantum numbers are capitalized to indicate totals for a system of particles, such as ML or mL for the total z-axis orbital angular momentum of all the electrons in an atom.[2]

Derivation

These orbitals have magnetic quantum numbers from left to right in ascending order. The dependence of the azimuthal component can be seen as a color gradient repeating times around the vertical axis.

There is a set of quantum numbers associated with the energy states of the atom. The four quantum numbers , , , and specify the complete quantum state of a single electron in an atom called its wavefunction or orbital. The Schrödinger equation for the wavefunction of an atom with one electron is a separable partial differential equation. (This is not the case for the neutral helium atom or other atoms with mutually interacting electrons, which require more sophisticated methods for solution[4]) This means that the wavefunction as expressed in spherical coordinates can be broken down into the product of three functions of the radius, colatitude (or polar) angle, and azimuth:[5]

The differential equation for can be solved in the form . Because values of the azimuth angle differing by 2 radians (360 degrees) represent the same position in space, and the overall magnitude of does not grow with arbitrarily large as it would for a real exponent, the coefficient must be quantized to integer multiples of , producing an imaginary exponent: .[6] These integers are the magnetic quantum numbers. The same constant appears in the colatitude equation, where larger values of tend to decrease the magnitude of and values of greater than the azimuthal quantum number do not permit any solution for

Relationship between Quantum Numbers
Orbital Values Number of Values for [7] Electrons per subshell
s 1 2
p 3 6
d 5 10
f 7 14
g 9 18

As a component of angular momentum

Illustration of quantum mechanical orbital angular momentum. The cones and plane represent possible orientations of the angular momentum vector for and . Even for the extreme values of , the -component of this vector is less than its total magnitude.

The axis used for the polar coordinates in this analysis is chosen arbitrarily. The quantum number refers to the projection of the angular momentum in this arbitrarily-chosen direction, conventionally called the -direction or quantization axis. , the magnitude of the angular momentum in the -direction, is given by the formula:[7]

.

This is a component of the atomic electron's total orbital angular momentum , whose magnitude is related to the azimuthal quantum number of its subshell by the equation:

,

where is the reduced Planck constant. Note that this for and approximates for high . It is not possible to measure the angular momentum of the electron along all three axes simultaneously. These properties were first demonstrated in the Stern–Gerlach experiment, by Otto Stern and Walther Gerlach.[8]

Effect in magnetic fields

The quantum number refers, loosely, to the direction of the angular momentum vector. The magnetic quantum number only affects the electron's energy if it is in a magnetic field because in the absence of one, all spherical harmonics corresponding to the different arbitrary values of are equivalent. The magnetic quantum number determines the energy shift of an atomic orbital due to an external magnetic field (the Zeeman effect) — hence the name magnetic quantum number. However, the actual magnetic dipole moment of an electron in an atomic orbital arises not only from the electron angular momentum but also from the electron spin, expressed in the spin quantum number.

Since each electron has a magnetic moment in a magnetic field, it will be subject to a torque which tends to make the vector parallel to the field, a phenomenon known as Larmor precession.

See also

Notes

  1. ^ m is often used when only one kind of magnetic quantum number, such as ml or mj, is used in a text.

References

  1. ^ a b Martin, W. C.; Wiese, W. L. (2019). "Atomic Spectroscopy - A Compendium of Basic Ideas, Notation, Data, and Formulas". National Institute of Standards and Technology, Physical Measurement Laboratory. NIST. Retrieved 17 May 2023.
  2. ^ a b c d Atkins, Peter William (1991). Quanta: A Handbook of Concepts (2nd ed.). Oxford University Press, USA. p. 297. ISBN 0-19-855572-5.
  3. ^ Griffiths, David J. (2005). Introduction to quantum mechanics (2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall. pp. 136–137. ISBN 0-13-111892-7. OCLC 53926857.
  4. ^ "Helium atom". 2010-07-20.
  5. ^ "Hydrogen Schrodinger Equation". hyperphysics.phy-astr.gsu.edu.
  6. ^ "Hydrogen Schrodinger Equation". hyperphysics.phy-astr.gsu.edu.
  7. ^ a b Herzberg, Gerhard (1950). Molecular Spectra and Molecular Structure (2 ed.). D van Nostrand Company. pp. 17–18.
  8. ^ "Spectroscopy: angular momentum quantum number". Encyclopædia Britannica.

Read other articles:

Software AdviceTypePublic companyTraded asNYSE: ITFounded2005FounderDon FornesAustin MerrittHeadquartersAustin, TexasUnited StatesKey peopleBlake Clark (General Manager)[1]Websitewww.softwareadvice.com Software Advice is a company that provides advisory services, research, and user reviews on software applications for businesses in over 300 market categories including medical, CRM, HR, construction, business intelligence and marketing automation.[2][3] Co-founded ...

 

«Aran» redirige aquí. Para la protagonista de Metroid, véase Samus Aran. Islas Aran Oileáin Árann · Aran Islands Costa de Inis Mór, la principal de las islas AranUbicación geográficaMar Océano AtlánticoGolfo bahía de GalwayContinente EuropaCoordenadas 53°07′00″N 9°42′00″O / 53.116666666667, -9.7Ubicación administrativaPaís  IrlandaDivisión  ConnachtSubdivisión Condado de GalwayDatos geográficosN.º de islas 3Islas Inis Mór Inis Meáin Inis

 

Місто Браддівіллангл. Braddyville Координати 40°34′43″ пн. ш. 95°01′47″ зх. д. / 40.57861111113877683° пн. ш. 95.02972222224978793° зх. д. / 40.57861111113877683; -95.02972222224978793Координати: 40°34′43″ пн. ш. 95°01′47″ зх. д. / 40.57861111113877683° пн. ш. 95.02972222224978793° зх. д.&...

Rait Ärm Persoonlijke informatie Geboortedatum 13 maart 2000 Geboorteplaats Saku, Estland Sportieve informatie Huidige ploeg Go Sport-Roubaix Lille Métropole Discipline(s) Weg Specialisatie(s) Sprinten Ploegen 20202021-20222023- Tartu 2024-Balticchaincycling.comEquipe continentale Groupama-FDJGo Sport-Roubaix Lille Métropole Portaal    Wielersport Rait Ärm (Saku, 13 maart 2000) is een Estisch wielrenner die anno 2020 rijdt voor Go Sport-Roubaix Lille Métropole. Carrière Ärm i...

 

Overview of archaeological claims of the Book of Mormon This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (February 2015) (Learn how and when to remove this template message) Part of a series on theBook of Mormon Origin Cumorah Golden plates Joseph Smith Emma Smith Oliver Cowdery Sidney Rigdon David Whitmer Martin Harris Lucy Harris Book of Mormon witn...

 

1938 Poirot novel by Agatha Christie Hercule Poirot's Christmas First UK editionAuthorAgatha ChristieCover artistNot knownCountryUnited KingdomLanguageEnglishGenreDetective fictionPublisherCollins Crime ClubPublication date19 December 1938Media typePrint (hardback & paperback)Pages256 first edition, hardbackPreceded byAppointment with Death Followed byMurder is Easy  Hercule Poirot's Christmas is a work of detective fiction by British writer Agatha Christie, ...

Horn ParkHorn Park December 2011, looking west, along Gavestone CrescentLocation of Horn Park in the Royal Borough of GreenwichTypePublic parkLocationHorn Park in the Royal Borough of Greenwich, United KingdomCoordinates51°26′35″N 0°01′34″E / 51.443°N 0.026°E / 51.443; 0.026Area16 acres (6.5 ha)Createdc.1940sOwned byRoyal Borough of GreenwichOpen06:00-20:00 or 24 hoursStatusOpen all yearAwardsGreen Flag Award 2012-2021Public transit accessbuses: 2...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2018) حصاة برازية حصاة برازية مشاراً إليها بالسهم والتي تسببت بالتهاب في الزائدة الدودية.حصاة برازية مشاراً إليها بالسهم والتي تسببت بالتهاب في الزائدة الدودية. ...

 

Wakil Perdana MenteriLambang Pemerintah JepangPetahanaLowongsejak 4 Oktober 2021GelarTuan Wakil Perdana MenteriYang MuliaAnggotaKabinetDewan Keamanan NasionalDitunjuk olehPerdana Menteridibuktikan oleh KaisarMasa jabatanTidak ada istilah tetapPejabat perdanaKijuro ShideharaDibentuk3 Mei 1947SuksesiPertamaGaji¥20,916,000 Wakil Perdana Menteri Jepang (副総理code: ja is deprecated , Fuku-sōri) adalah pejabat tertinggi kedua dari cabang eksekutif pemerintah Jepang setelah Perdana Menter...

Chanel 2.55 Chanel 2.55 — легендарна класична сумка, створена будинком моди Chanel. Зміст 1 Історія створення 2 Особливості 3 Різновиди 4 Джерела 5 Посилання Історія створення «Я втомилась носити ридикюли в руках, до того ж я їх постійно гублю», — заявила в 1954 році Коко Шанель. У люто

 

US indie rock band For other uses, see Mount Joy (disambiguation). Mt. JoyMt. Joy. From left to right: Cooper, Miclau, Byrnes, Quinn, EliopoulosBackground informationOriginPhiladelphia, Pennsylvania, U.S.Genres Alternative rock indie rock folk rock blues rock Americana Years active2016–presentLabels Island R&R[1] Members Matt Quinn Sam Cooper Michael Byrnes Sotiris Eliopoulos Jackie Miclau Websitemtjoyband.com Mt. Joy is an American five-piece indie rock band based in Los Angele...

 

Diskografi BoAAlbum studio20Album kompilasi6Singel76 Daftar ini berisi diskografi BoA, penyanyi Korea yang berkarier di Korea Selatan, Jepang, dan Amerika Serikat. Kariernya di industri rekaman dimulai pada 25 Agustus 2000 di Korea Selatan. Hingga kini, ia telah merilis 10 album berbahasa Korea, 3 album mini berbahasa Korea, 9 album berbahasa Jepang, 3 album kompilasi di Jepang (satu album berisi lagu berbahasa Korea), dua album remix di Jepang, 28 singel berbahasa Jepang, 5 singel berbahasa ...

Politics of Ukraine Constitution Human rights Presidency President Volodymyr Zelenskyy Office of the President National Security and Defence Council Presidential representatives Presidential symbols Executive Prime Minister Denys Shmyhal Cabinet Shmyhal Government Legislature Verkhovna Rada (parliament) Chairman: Ruslan Stefanchuk Committees People's Deputy of Ukraine Imperative mandate Judiciary Constitutional Court Supreme Court Prosecutor General Local government Local state administration...

 

Danny Burch England Burch in seinen ersten Jahren in Europa. Personalia Geburtsname Martin Harris Geburtstag 31. Dezember 1981 Geburtsort London, England Karriereinformationen Ringname(n) Danny BurchJoe RiotMartin Stone Körpergröße 183 cm Kampfgewicht 86 kg Angekündigt aus London, England Debüt 2003 Martin Harris (* 31. Dezember 1981 in London, England) ist ein englischer Wrestler. Er ist derzeit Free Agent. Sein bislang größter Erfolg ist der Erhalt der NXT Tag Team Champion...

 

Border dispute Cambodian–Thai border disputeThe Preah Vihear TempleDate22 June 2008 – 15 December 2011(3 years, 5 months, 3 weeks and 2 days)LocationCambodia–Thailand borderResult Stalemate ICJ decision awards promontory of Preah Vihear to Cambodia[1]Belligerents  Cambodia  ThailandCommanders and leaders Hun Sen Abhisit VejjajivaCasualties and losses 19 soldiers killed[2]3 civilians killed[3] 16 soldiers killed[4]2 civilians ...

Nigerian charter airline Kabo Air IATA ICAO Callsign N9[1] QNK[1] KABO[1] Founded1980Ceased operations2016HubsMallam Aminu Kano International AirportFleet size1Parent companyKabo Holdings[1]HeadquartersKano, NigeriaKey peopleSaidu Mohammed, Managing director[1]Websitewww.flykabo.com Kabo Air was a Nigerian charter airline headquartered in Kano, Kano State[2] and based at Mallam Aminu Kano International Airport.[3] History A former Kabo A...

 

Cet article est une ébauche concernant la politique et l’Allemagne. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. TU Berlin Les mouvements sociaux de 1968 en Allemagne et Europe de l'Est surviennent à la suite de manifestations étudiantes contre la guerre du Viêt Nam. À l'est de l'Europe, dans les pays communistes (c'est-à-dire ceux dominés par l'URSS, sans liberté, sans élections, etc. et se fo...

 

12 Wojskowy Oddział Gospodarczy Odznaka pamiątkowa 12 WOG Historia Państwo  Polska Sformowanie 2012 Patron gen. Karol Kniaziewicz Dowódcy Obecny płk Grzegorz Gotowicz Organizacja Dyslokacja Toruń Rodzaj wojsk Logistyka Podległość 1 RBLog. Strona internetowa 12 Wojskowy Oddział Gospodarczy im. gen. dyw. Karola Otto Kniaziewicza (12 WOG) – jednostka logistyczna Sił Zbrojnych Rzeczypospolitej Polskiej. Realizuje zadania zabezpieczenia finansowego i logistycznego jednostek i ins...

Lebanese-American designer and art critic This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (October 2016) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contenti...

 

See also Culture of South Korea, Korean literature until 1945, and North Korean literature Byeolmadang Library at Starfield COEX Mall in seoul South Korean literature is literature written or produced in South Korea following the division of Korea into North and South in 1945.[1] South Korean literature is primarily written in Korean, though English loanwords are prevalent.[2] Literature by genre Mainstream fiction Part of a series on theCulture of Korea Society History People...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!