Madhava's correction term

Madhava's correction term is a mathematical expression attributed to Madhava of Sangamagrama (c. 1340 – c. 1425), the founder of the Kerala school of astronomy and mathematics, that can be used to give a better approximation to the value of the mathematical constant π (pi) than the partial sum approximation obtained by truncating the Madhava–Leibniz infinite series for π. The Madhava–Leibniz infinite series for π is

Taking the partial sum of the first terms we have the following approximation to π:

Denoting the Madhava correction term by , we have the following better approximation to π:

Three different expressions have been attributed to Madhava as possible values of , namely,

In the extant writings of the mathematicians of the Kerala school there are some indications regarding how the correction terms and have been obtained, but there are no indications on how the expression has been obtained. This has led to a lot of speculative work on how the formulas might have been derived.

Correction terms as given in Kerala texts

The expressions for and are given explicitly in the Yuktibhasha, a major treatise on mathematics and astronomy authored by the Indian astronomer Jyesthadeva of the Kerala school of mathematics around 1530, but that for appears there only as a step in the argument leading to the derivation of .[1][2]

The Yuktidipika–Laghuvivrthi commentary of Tantrasangraha, a treatise written by Nilakantha Somayaji an astronomer/mathematician belonging to the Kerala school of astronomy and mathematics and completed in 1501, presents the second correction term in the following verses (Chapter 2: Verses 271–274):[3][1]

English translation of the verses:[3]

"To the diameter multiplied by 4 alternately add and subtract in order the diameter multiplied by 4 and divided separately by the odd numbers 3, 5, etc. That odd number at which this process ends, four times the diameter should be multiplied by the next even number, halved and [then] divided by one added to that [even] number squared. The result is to be added or subtracted according as the last term was subtracted or added. This gives the circumference more accurately than would be obtained by going on with that process."

In modern notations this can be stated as follows (where is the diameter of the circle):

Circumference

If we set , the last term in the right hand side of the above equation reduces to .

The same commentary also gives the correction term in the following verses (Chapter 2: Verses 295–296):

English translation of the verses:[3]

"A subtler method, with another correction. [Retain] the first procedure involving division of four times the diameter by the odd numbers, 3, 5, etc. [But] then add or subtract it [four times the diameter] multiplied by one added to the next even number halved and squared, and divided by one added to four times the preceding multiplier [with this] multiplied by the even number halved."

In modern notations, this can be stated as follows:

where the "multiplier" If we set , the last term in the right hand side of the above equation reduces to .

Accuracy of the correction terms

Let

.

Then, writing , the errors have the following bounds:[2][4]

Numerical values of the errors in the computation of π

The errors in using these approximations in computing the value of π are

The following table gives the values of these errors for a few selected values of .

Errors in using the approximations to compute the value of π
11
21
51
101
151

Continued fraction expressions for the correction terms

It has been noted that the correction terms are the first three convergents of the following continued fraction expressions:[3]

The function that renders the equation

exact can be expressed in the following form:[1]

The first three convergents of this infinite continued fraction are precisely the correction terms of Madhava. Also, this function has the following property:

Speculative derivation by Hayashi et al.

In a paper published in 1990, a group of three Japanese researchers proposed an ingenious method by which Madhava might have obtained the three correction terms. Their proposal was based on two assumptions: Madhava used as the value of π and he used the Euclidean algorithm for division.[5][6]

Writing

and taking compute the values express them as a fraction with 1 as numerator, and finally ignore the fractional parts in the denominator to obtain approximations:

This suggests the following first approximation to which is the correction term talked about earlier.

The fractions that were ignored can then be expressed with 1 as numerator, with the fractional parts in the denominators ignored to obtain the next approximation. Two such steps are:

This yields the next two approximations to exactly the same as the correction terms

and

attributed to Madhava.

See also

References

  1. ^ a b c C. T. Rajagopal & M. S. Rangachari (1978). "On an Untapped Source of Medieval Keralese Mathematics". Archive for History of Exact Sciences. 18 (2): 89–102. doi:10.1007/BF00348142. S2CID 51861422.
  2. ^ a b K. V. Sarma with explanatory notes in English by K. Ramasubrahmanyan, M. D. Srinivas, M. S. Sriram (2008). Ganita-Yukti-Bhasha of Jyeshthadeva. Volume I – Mathematics. New Delhi: Hindustan Book Agency. pp. 201–207. ISBN 978-81-85931-81-4.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. ^ a b c d C. K. Raju (2007). History of Science, Philosophy and Culture in Indian Civilization General Editor D. P. Chattopadhyaya Volume X Part 4. Cultural Foundations of Mathematics: The Nature of Mathematical Proof and the Transmission of the Calculus from India to Europe in the 16th c. CE. New Delhi: Centre for Studies in Civilizations and Dorling Kindersley (India) Pvt Ltd. pp. 173–174. ISBN 978-81-317-0871-2.
  4. ^ Ranjan Roy (2011). Sources in the Development of Mathematics Infinite Series and Products from the Fifteenth to the Twenty-first Century. New York: Cambridge University Press. p. 5. ISBN 978-0-521-11470-7.
  5. ^ T. Hayashi, T. Kusuba and M. Yano (1990). "The Correction of the Madhava Series for the Circumference of a Circle". Cenluurus (33): 149–174.
  6. ^ George Ghevarghese Joseph (2009). A Passage to Infinity Medieval Indian Mathematics from Kerala and Its Impact. New Delhi: SAGE Publications India Pvt Ltd. pp. 132–133. ISBN 978-81-321-0168-0.

Additional reading

  • C. T. Rajagopal and M. S. Rangachari (1986). "On Medieval Kerala Mathematics". Archive for History of Exact Sciences. 35 (2): 91–99. doi:10.1007/BF00357622. JSTOR 41133779. S2CID 121678430.
  • P. Rajasekhar (June 2011). "Derivation of remainder term for the Series expansion of π as depicted in Yukthibhasa and its modern Interpretation". Bulletin of Kerala Mathematics Association. 8 (1): 17–39.
  • Ranjan Roy (13 June 2011). "Power Series in Fifteenth-Century Kerala", except from Sources in the Development of Mathematics: Infinite Series and Products from the Fifteenth to the Twenty-first Century. Cambridge University Press. ISBN 978-0-521-11470-7.

Read other articles:

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2019) NA-1 (Chitral)البلد  باكستان المقاطعة مقاطعة جتراليالمنطقة خيبر بختونخواجمهور الناخبين 269,579[1]الدائرة الانتخابيةتأسست في 3 مايو 2018 الأعضاء عبد الأكبر جترال

 

Die ungefähre Position des Weinbergs, wo sich auch die Hoenborg befunden haben soll. Weinberg ist der Name eines ehemaligen Grabhügels in Flensburg-Weiche, von dem nur der gleichnamige Flurname zurückblieb. Einer Sage nach soll sich im dortigen Gebiet die Burg Hoenborg befunden haben.[1] Inhaltsverzeichnis 1 Hintergrund 1.1 Lage und Umgebung des Weinberges 1.2 Die Hoenborg beim Weinberg 1.3 Ausgrabung und Planierung 1939/1940 1.4 Das Gebiet des Weinberges heute 2 Einzelnachweise 3 ...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2017) جاك جارفينكل   معلومات شخصية الميلاد 13 يونيو 1918(1918-06-13)بروكلين  الوفاة أغسطس 14, 2013 (عن عمر ناهز 95 عاماً)بروكلين  الطول 6 قدم 0 بوصة (1.8 م) مركز الل

USS Momsen (DDG-92) El USS Momsen (DDG-92) fotografiado en el año 2006.Banderas HistorialAstillero Bath Iron Works (Bath, Maine, EE. UU.)Clase Arleigh BurkeTipo DestructorIniciado 16 de noviembre de 2001Botado 19 de julio de 2003Asignado 28 de agosto de 2004Destino En servicio[editar datos en Wikidata] El USS Momsen (DDG-92) es un destructor de la clase Arleigh Burke de la Armada de los Estados Unidos. Fue puesto en gradas en 2001, botado en 2003 y asignado en 2004. Construcci...

 

León Fernández Bonilla Información personalNacimiento 17 de febrero de 1840 Alajuela, Estado Libre de Costa Rica.Fallecimiento 09 de enero de 1887 (46 años) Alajuela, Costa Rica.Nacionalidad CostarricenseFamiliaPadres José León Fernández y Salazar y Sebastiana Bonilla y La PeñaCónyuge Isabel Guardia GutiérrezHijos Ricardo Fernández Guardia Tomás Rafael Fernández BarthEducaciónEducado en Universidad de Santo Tomás, Universidad de San Carlos de GuatemalaInformación profesio...

 

Ten artykuł dotyczy stolicy Irlandii. Zobacz też: inne znaczenia tej nazwy. DublinBaile Átha Cliath The Custom House Herb Flaga Dewiza: łac. Obedientia Civium Urbis Felicitas Państwo  Irlandia Prowincja Leinster Hrabstwo Dublin Burmistrz Hazel Chu[1] Powierzchnia 117,8 km² Populacja (2022)• liczba ludności• gęstość 588 233[2]4811 os./km² Nr kierunkowy +353 (0) 1 Kod pocztowy D1-18, 20, 22, 24, D6W Tablice rejestracyjne D Położenie na mapie IrlandiiDub...

MonokotilRentang fosil: Kapur Awal - sekarang Bunga Hemerocallis Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Angiospermae (tanpa takson): Monokotil Ordo lihat teks Tumbuhan berkeping biji tunggal (atau monokotil) adalah salah satu dari dua kelompok besar tumbuhan berbunga yang secara klasik diajarkan; kelompok yang lain adalah tumbuhan bijinya berkeping dua atau dikotil. Ciri monokotil yang paling khas adalah bijinya tunggal karena hanya memiliki satu daun lembaga,berakar serabut, da...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Wessex '82 – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this template message)1982 EP by The Subhumans, The Pagans, Organized Chaos and The A-HeadsWessex '82EP by The Subhumans, The Pagans, Organized Chaos a...

 

2016 document leak scandal Panama Papers scandal redirects here. For the 1892 French corruption affair, see Panama scandals. For the Pakistani landmark decision, see Panama Papers case. Countries with politicians, public officials or close associates implicated in the leak on April 15, 2016 (as of May 19, 2016) Part of a series onTaxation An aspect of fiscal policy Policies Government revenue Property tax equalization Tax revenue Non-tax revenue Tax law Tax bracket Flat tax Tax threshold Exem...

Indian politician D. Jayakumar12th Speaker of the Tamil Nadu Legislative AssemblyIn office27 May 2011 – 29 September 2012DeputyP. DhanapalPreceded byR. AvudaiappanSucceeded byP. DhanapalMinister for Fisheries and Administration reformsIn office23 May 2016 – 6 May 2021Chief MinisterEdappadi K. PalaniswamiO. PanneerselvamJ.JayalalithaaMinister of FinanceIn office16 February 2017 – 21 August 2017Chief MinisterEdappadi K. PalaniswamiPreceded byO. PanneerselvamSucc...

 

F.VII Swissair Fokker F.VIIb-3 m (CH-192) piloted by Walter Mittelholzer in Kassala (Sudan), February 1934. Jenis Passenger & military transport Pembuat Fokker Penerbangan perdana 1924 Diperkenalkan 1925 Pengguna utama SABENAKLMPolish Air ForcePolskie Linie Lotnicze LOT Dibuat 1925-1932 Dikembangkan dari Fokker F.V Varian Fokker F.10 Fokker F.VII Fokker F.VII di lapangan terbang Cililitan (1929) Fokker F.VII di lapangan terbang Medan (sekitar tahun 1940) Fokker F.VII adalah sebuah pe...

 

Polyethnic country's demography Part of a series on theCulture of Iran HistoryPeopleLanguagesSymbolsFestivalsWorld Heritage Sites MythologyFolklore PhilosophyAstronomy ReligionIrreligion Arts ArchitectureLiteratureMusic (Dastgah)DanceTheaterCinemaGardensVisual art history (Modern art, Miniature painting) Handicrafts EmbroideryCalligraphyCarpetPottery,Jewelry Cuisine Balochi cuisineCaspian cuisineKurdish cuisine Iran portalvte The majority of the population of Iran (approximately 67–80%) con...

U.S. Army Aviation Applied Technology Directorate Logo. The United States Army Aviation Applied Technology Directorate (AATD) is a tenant activity located at Fort Eustis, Virginia. It is a directorate of the Aviation Development Directorate under the Aviation and Missile Research, Development, and Engineering Center (AMRDEC), a part of the Research, Development and Engineering Command (RDECOM). Circa 2019 AATD was renamed the Technology Development Directorate - Aviation. History The predeces...

 

Ola Toivonen Ola berseragam PSVInformasi pribadiTanggal lahir 3 Juli 1986 (umur 37)Tempat lahir Degerfors, SwediaTinggi 1,91 m (6 ft 3 in)Posisi bermain StrikerInformasi klubKlub saat ini PSV EindhovenNomor 7Karier senior*Tahun Tim Tampil (Gol)2005–2006 Degerfors 27 (5)2006–2007 Örgryte 25 (6)2007–2009 Malmö FF 51 (17)2009– PSV 76 (35)Tim nasional‡2003 Swedia U-17 2 (0)2004–2005 Swedia U-19 11 (6)2006–2009 Swedia U-21 28 (13)2007– Swedia 22 (4) * Penampil...

 

American pop rock band EverlifeBackground informationOriginIndiana, PennsylvaniaGenresPop rock, power pop, CCMYears active2001-2013Labels Independent Tovah/Shelter Walt Disney/Hollywood/Buena Vista 97 Members Amber Hezlep (née Ross) Sarah Ross Julia Ross Websiteeverlifeonline.com Everlife was an American pop rock band made up of three sisters, Amber, Sarah, and Julia Ross which formed in early 2001.[1] History Everlife originated in Indiana, Pennsylvania. The band was formed in the w...

Эта статья о средневековом искусстве; о молодёжной субкультуре см. Готы (субкультура). У этого термина существуют и другие значения, см. Готика (значения). Готика Названо в честь Готы Государство  Франция Италия Священная Римская империя Предыдущее по порядку рома...

 

Canadian nurse, educator and pioneer in the field of hospital care Mary Adelaide NuttingBornMary Adelaide Nutting(1858-11-01)November 1, 1858Canada EastDiedOctober 3, 1948(1948-10-03) (aged 89)White Plains, New YorkNationalityCanadianEducationSchool of Nursing, Johns Hopkins UniversityMedical careerProfessionNursingInstitutionsSchool of Nursing, Johns Hopkins University Teachers College, Columbia University Mary Adelaide Nutting (November 1, 1858 – October 3, 1948) was a Canadian nurse...

 

Australian film, television and stage actress Judy DavisDavis in 2012BornJudith Davis (1955-04-23) 23 April 1955 (age 68)Perth, Western Australia, AustraliaEducationCurtin UniversityNational Institute of Dramatic Art (BFA)OccupationActressYears active1977–presentWorksFull listSpouse Colin Friels ​(m. 1984)​Children2AwardsFull list Judith Davis (born 23 April 1955) is an Australian actress in film, television, and on stage. With a career spanning over 4...

This article is about the 1977 song by Kansas. For the 1986 movie by Hou Hsiao-hsien, see Dust in the Wind (film). 1978 single by KansasDust in the WindSingle by Kansasfrom the album Point of Know Return B-sideParadoxReleasedJanuary 16, 1978RecordedJuly 1977StudioWoodland Studios (Nashville)GenreSoft rock[1]Length3:27LabelKirshnerSongwriter(s)Kerry LivgrenProducer(s) Jeff Glixman Kansas Kansas singles chronology Point of Know Return (1977) Dust in the Wind (1978) Portrait (He Knew) (1...

 

Japanese physicist (1906-1979) Shin'ichirō TomonagaTomonaga in 1965Born(1906-03-31)March 31, 1906Tokyo, JapanDiedJuly 8, 1979(1979-07-08) (aged 73)Tokyo, JapanAlma materKyoto Imperial UniversityKnown forQuantum electrodynamicsSchwinger–Tomonaga equationTomonaga–Luttinger liquidAwardsAsahi Prize (1946)Lomonosov Gold Medal (1964)Nobel Prize in Physics (1965)Scientific careerFieldsTheoretical physicsInstitutionsLeipzig UniversityInstitute for Advanced StudyTokyo University of...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!