Indiana pi bill

Goodwin's model circle as described in section 2 of the bill. It has a diameter of 10 and a stated circumference of "32" (not 31.4159~); the chord of 90° has length stated as "7" (not 7.0710~).

The Indiana pi bill was bill 246 of the 1897 sitting of the Indiana General Assembly, one of the most notorious attempts to establish mathematical truth by legislative fiat. Despite its name, the main result claimed by the bill is a method to square the circle. The bill implies incorrect values of the mathematical constant π, the ratio of the circumference of a circle to its diameter.[1] The bill, written by a physician and an amateur mathematician, never became law due to the intervention of C. A. Waldo, a professor at Purdue University, who happened to be present in the legislature on the day it went up for a vote.

The mathematical impossibility of squaring the circle using only straightedge and compass constructions, suspected since ancient times, had been proven 15 years previously, in 1882, by Ferdinand von Lindemann. Better approximations of π than those implied by the bill have been known since ancient times.

Legislative history

An 1897 political cartoon mocking the Indiana pi bill

In 1894, Indiana physician Edward J. Goodwin (c. 1825 – 1902[2]), also called "Edwin Goodwin" by some sources,[3] believed that he had discovered a way of squaring the circle.[4] He proposed a bill to state representative Taylor I. Record, who introduced it in the House under the title "A Bill for an act introducing a new mathematical truth and offered as a contribution to education to be used only by the State of Indiana free of cost by paying any royalties whatever on the same, provided it is accepted and adopted by the official action of the Legislature of 1897".

The text of the bill consists of a series of mathematical claims, followed by a recitation of Goodwin's previous accomplishments:

... his solutions of the trisection of the angle, doubling the cube and quadrature of the circle having been already accepted as contributions to science by the American Mathematical Monthly ... And be it remembered that these noted problems had been long since given up by scientific bodies as unsolvable mysteries and above man's ability to comprehend.

(Goodwin's "solutions" were indeed published in the American Mathematical Monthly, with a disclaimer of "published by request of the author".)[5]

Upon its introduction in the Indiana House of Representatives, the bill's language and topic caused confusion; a member proposed that it be referred to the Finance Committee, but the Speaker accepted another member's recommendation to refer the bill to the Committee on Swamplands, where the bill could "find a deserved grave". It was transferred to the Committee on Education, which reported favorably.[6] Following a motion to suspend the rules, the bill passed on February 6, 1897[7] without a dissenting vote.[6]

The news of the bill caused an alarmed response from Der Tägliche Telegraph, a German-language newspaper in Indianapolis, which viewed the event with less favor than its English-speaking competitors.[8] As this debate concluded, Purdue University professor C. A. Waldo arrived in Indianapolis to secure the annual appropriation for the Indiana Academy of Science. An assemblyman handed him the bill, offering to introduce him to the genius who wrote it. He declined, saying that he already met as many crazy people as he cared to.[6][9]

When it reached the Indiana Senate, the bill was not treated as kindly, for Waldo had talked to the senators previously. The Committee on Temperance to which it had been assigned had reported it favorably, but the Senate on February 12, 1897, postponed the bill indefinitely. It had been nearly passed, but opinion changed when one senator observed that the General Assembly lacked the power to define mathematical truth.[10] Influencing some of the senators was a report that major newspapers, such as the Chicago Tribune, were ridiculing the situation.[7]

According to the Indianapolis News article of February 13, 1897:[11]

... the bill was brought up and made fun of. The Senators made bad puns about it, ridiculed it and laughed over it. The fun lasted half an hour. Senator Hubbell said that it was not meet for the Senate, which was costing the State $250 a day, to waste its time in such frivolity. He said that in reading the leading newspapers of Chicago and the East, he found that the Indiana State Legislature had laid itself open to ridicule by the action already taken on the bill. He thought consideration of such a proposition was not dignified or worthy of the Senate. He moved the indefinite postponement of the bill, and the motion carried.[6]

Mathematics

Approximation of π

Although the bill has become known as the "pi bill", its text does not mention the name "pi" at all. Goodwin appears to have thought of the ratio between the circumference and diameter of a circle as distinctly secondary to his main aim of squaring the circle. Towards the end of Section 2, the following passage appears:

Furthermore, it has revealed the ratio of the chord and arc of ninety degrees, which is as seven to eight, and also the ratio of the diagonal and one side of a square which is as ten to seven, disclosing the fourth important fact, that the ratio of the diameter and circumference is as five-fourths to four[.][12]

In other words, , and .

Area of the circle

Goodwin's main goal was not to measure lengths in the circle but to find a square with the same area as the circle. He knew that Archimedes' formula for the area of a circle, which calls for multiplying the diameter by one-fourth of the circumference, is not considered a solution to the ancient problem of squaring the circle.

This is because the problem is to construct the area using a compass and straightedge only. Archimedes did not give a method for constructing a straight line with the same length as the circumference. Goodwin was unaware of this central requirement; he believed that the problem with the Archimedean formula was that it gave wrong numerical results; a solution to the ancient problem should replace it with a "correct" formula. So, he proposed, without argument, his method:

It has been found that a circular area is to the square on a line equal to the quadrant of the circumference, as the area of an equilateral rectangle is to the square on one side.[12]

An "equilateral rectangle" is, by definition, a square. This is an assertion that the area of a circle is the same as that of a square with the same perimeter. This claim results in mathematical contradictions to which Goodwin attempts to respond. For example, right after the above quotation:

The diameter employed as the linear unit according to the present rule in computing the circle's area is entirely wrong, as it represents the circle's area one and one-fifth times the area of a square whose perimeter is equal to the circumference of the circle.

In the model circle above, the Archimedean area (accepting Goodwin's values for the circumference and diameter) would be 80. Goodwin's proposed rule leads to an area of 64.

The area found by Goodwin's rule is times the true area of the circle, which, in many accounts of the pi bill, is interpreted as a claim that , but there is no evidence in the bill that Goodwin intended to make such a claim. He repeatedly denied that the area of the circle has anything to do with its diameter.

Notes

  1. ^ Wilkins, Alasdair (31 January 2012). "The Eccentric Crank Who Tried To Legislate The Value Of Pi". io9. Retrieved 23 May 2019.
  2. ^ Dudley 1992, p. 195, citing an obituary
  3. ^ "Did You Know?: Purdue and Indiana's Pi Bill - News - Purdue University". purdue.edu.
  4. ^ Goodwin, Edward J. (1894). "Quadrature of the Circle". Queries and Information. American Mathematical Monthly. 1 (7): 246–247. doi:10.2307/2971093. JSTOR 2971093.

    Reprinted in: Lennart Berggren, Jonathan Borwein, and Peter Borwein, Pi: A Source Book, 3rd ed. (New York, New York: Springer-Verlag, 2004), page 230.

    See also: Purdue Agricultural Economics.

    Edward J. Goodwin (1895) "(A) The trisection of an angle; (B) Duplication of the cube," American Mathematical Monthly, 2: 337.

  5. ^ "Clearing the Misunderstanding Re My April Fool's 'Joke'". math.rutgers.edu.
  6. ^ a b c d "Indiana Pi". Archived from the original on 2019-02-21.
  7. ^ a b Hallerburg 1975, p. 390.
  8. ^ Hallerburg 1975, p. 385.
  9. ^ Waldo, C. A. (1916). "What Might Have Been". Proceedings of the Indiana Academy of Science: 445–446. Retrieved 24 April 2017.
  10. ^ Hallerburg 1975, p. 391.
  11. ^ "THE MATHEMATICAL BILL. Fun-Making In the Senate Yester-day Afternoon--Other Action". Indianapolis News. 13 February 1897. Retrieved 24 April 2017.
  12. ^ a b "Text of the bill". Archived from the original on 2013-06-27.

References

Read other articles:

See also: Adelaide of Habsburg Queen consort of Sardinia Adelaide of AustriaQueen consort of SardiniaTenure23 March 1849 – 20 January 1855Born(1822-06-03)3 June 1822Royal Palace of Milan, MilanDied20 January 1855(1855-01-20) (aged 32)Royal Palace of Turin, TurinBurialBasilica of Superga, TurinSpouse Victor Emmanuel II of Sardinia ​ ​(m. 1842)​Issueamong others...Maria Clotilde, Princess NapoléonUmberto I, King of ItalyAmadeo I, King of SpainOddon...

 

 

Wali Kota Administrasi Jakarta BaratPetahanaUus Kuswantosejak 21 Maret 2023Dibentuk1966Pejabat pertamaR. Sudardja Berikut adalah artikel tentang Daftar Wali Kota Administrasi Jakarta Barat, satu wilayah administrasi di provinsi Daerah Khusus Ibukota Jakarta, Indonesia dari masa ke masa sejak dibentuk tahun 1966. No. Foto Nama Mulai menjabat Akhir menjabat Ket. Wakil 1 R. Sudardja 1966 1972 – 2 S. Silalahi 1972 1979 3 Eddy Ruchijat Soheh 1979 1987 4 Sudjoko Tirtowidjojo 1987 1993 5 Suta...

 

 

Ця стаття не містить посилань на джерела. Ви можете допомогти поліпшити цю статтю, додавши посилання на надійні (авторитетні) джерела. Матеріал без джерел може бути піддано сумніву та вилучено. (березень 2023) Новопавлівський повіт Новопавлівський повіт — утворений у ...

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 9 de julio de 2010. Adnan Menderes Adnan Menderes Primer ministro de Turquía 1950-1960Predecesor Semsettin GünaltaySucesor Cemal Gürsel Información personalNacimiento 1899Aydın,  TurquíaFallecimiento 17 de septiembre de 1961İmralı,  TurquíaCausa de muerte Ahorcamiento Sepultura Mausoleum of Adnan Menderes e Imrali Nacionalidad TurcaReligión Sunismo FamiliaC...

 

 

Lili Bleeker Algemene informatie Volledige naam Caroline Emilie Bleeker Geboren 17 januari 1897Middelburg Overleden 8 november 1985Zeist Nationaliteit  Nederland Beroep natuurkundige, ondernemer Portaal    Natuurkunde Wiskunde Caroline (Lili) Emilie Bleeker (Middelburg, 17 januari 1897 – Zeist, 8 november 1985) was een Nederlands natuurkundige. Zij promoveerde in 1928 bij Ornstein.[1] Anderhalf jaar na haar promotie richtte ze in 1930 het Physisch Adviesbureau op...

 

 

Untuk orang lain dengan nama yang sama, lihat Peter Larson (disambiguasi). Larson di Festival Film Montclair 2014 Peter Lars Larson (kelahiran 1952) adalah seorang paleontolog, kolektor fosil dan presiden Black Hills Institute of Geological Research. Ia memimpin tim yang mengangkat Sue, spesimen terbesar dan terlengkap dari Tyrannosaurus rex sampai saat ini, dan telah menerbitkan sejumlah karya saintifik dan populer tentang paleontologi dinosaurus. Ia dikritim oleh beberapa paleontolog akadem...

Carex canariensis Klasifikasi ilmiah Kerajaan: Plantae Divisi: Tracheophyta Kelas: Liliopsida Ordo: Poales Famili: Cyperaceae Genus: Carex Spesies: Carex canariensis Nama binomial Carex canariensisKük. Carex canariensis adalah spesies tumbuhan seperti rumput yang tergolong ke dalam famili Cyperaceae. Spesies ini juga merupakan bagian dari ordo Poales. Spesies Carex canariensis sendiri merupakan bagian dari genus Carex.[1] Nama ilmiah dari spesies ini pertama kali diterbitkan oleh Kü...

 

 

Coordenadas: 46° 54' 05 N 0° 17' 12 O Sainte-Gemme   Comuna francesa    Localização Sainte-GemmeLocalização de Sainte-Gemme na França Coordenadas 46° 54' 05 N 0° 17' 12 O País  França Região Nova Aquitânia Departamento Deux-Sèvres Características geográficas Área total 8,84 km² População total (2018) [1] 403 hab. Densidade 45,6 hab./km² Código Postal 79330 Código INSEE 79250 Sainte-Gemme é uma comu...

 

 

1999 studio album by SnowCooler ConditionsStudio album by SnowReleasedSeptember 13, 1999Recorded1998-1999GenreReggae, hip-hopLabelJVCProducerMC Shan, SnowSnow chronology Justuss(1997) Cooler Conditions(1999) Mind on the Moon(2000) Cooler Conditions is the fourth studio album by Canadian reggae musician Snow. Released only in Japan, many of the tracks later appeared on the more widely released Mind on the Moon album. The tracks Someday Somehow, Everybody Wants to Be Like You, Jimmy Hat...

Peluncuran roket H-IIA Penerbangan 13 yang membawa Kaguya SELENE atau Kaguya adalah nama dari wahana antariksa Jepang yang pertama. SELENE adalah singkatan dari Selenological and Engineering Explorer. Dalam mitologi Yunani, Selene adalah dewi bulan. Wahana ini adalah wahana antariksa pertama negara Jepang yang dikirim untuk misi penjelajahan bulan. SELENE ini juga mendapat julukan nama Kaguya. Dalam dongeng Jepang, Kaguya adalah nama seorang putri yang berasal dari bulan. Kaguya diluncurkan d...

 

 

2003 Indian filmGolmaalOfficial posterDirected byP. N. Ramachandra RaoWritten byP. N. Ramachandra RaoProduced byP. N. Ramachandra RaoStarringJ. D. Chakravarthy Ramesh AravindMeera Vasudevan Neha PendseCinematographyM. V. RaghuEdited byKotagiri Venkateswara RaoMusic byVandemataram SrinivasProductioncompanyGayatri Kala ChitraRelease date 21 February 2003 (2003-02-21) CountryIndiaLanguageTelugu Golmaal is a 2003 Indian Telugu-language comedy film directed, produced and written by ...

 

 

American journalist and television personality Abby HuntsmanHuntsman in August 2012BornAbigail Haight Huntsman (1986-05-01) May 1, 1986 (age 37)Philadelphia, Pennsylvania, U.S.EducationUniversity of UtahUniversity of Pennsylvania (BA)Occupation(s)Television personality, journalist, co-Host on The ViewTelevisionABCPolitical partyRepublicanSpouse Jeffrey Livingston ​(m. 2010)​Children3Parent(s)Jon Huntsman Jr.Mary Kaye HuntsmanRelativesJon Huntsman Sr. (grandfa...

  هذه المقالة عن فرقة أكسنت الرومانية لموسيقى البوب. لو كنت تقصد الشركة، طالع أكسنت (شركة). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2016) أكسنت بداية 1999  النوع موسيقى الرقص الإلكترونية،  ودانس ...

 

 

British politician This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ernest Brown British politician – news · newspapers · books · scholar · JSTOR (Janu...

 

 

União das Freguesias de Escudeiros e Penso (Santo Estêvão e São Vicente)Escudeiros e Penso (Santo Estêvão e São Vicente) Freguesia de Portugal Capilla de Nuestra Señora del Rosario União das Freguesias de Escudeiros e Penso (Santo Estêvão e São Vicente)Localización de União das Freguesias de Escudeiros e Penso (Santo Estêvão e São Vicente) en PortugalCoordenadas 41°28′41″N 8°25′41″O / 41.478, -8.428Entidad Freguesia de Portugal • País  P...

British TV series or programme Vicious CircleGenreCrime dramaWritten byKieran PrendivilleDirected byDavid BlairStarring Ken Stott Gerard McSorley Andrew Connolly John Kavanagh Art Malik Michelle Fairley Michael Liebmann Norman Rodway ComposerStephen McKeonCountry of originUnited KingdomOriginal languageEnglishNo. of episodes1ProductionExecutive producers Robert Cooper Kevin Menton Nigel Warren-Green ProducerSue AustenProduction locationsAberdeenshire, ScotlandCinematographyFred TammesEdi...

 

 

1988 German animated adventure film Stowaways on the ArkDirected byWolfgang UrchsWritten byWolfgang UrchsStory byUte Schoemann-KollProduced byWilli BenningerUte Schoemann-KollMichael SchoemannEdited byHannes NikelMusic byFrank PleyerProductioncompaniesMS-FilmsParamount Filmproduction GmbHArtemis Film GmbHZDFDistributed byParamount Filmproduction GmbHUnited International Pictures (Germany/UK[1])Harmony Gold[2][3] (USA)Release datesMarch 24, 1988 (Germany)May 27, 1992 (U...

 

 

أم العلقاء موقع محافظة السليل بالنسبة لمنطقة الرياض تقسيم إداري البلد  السعودية التقسيم الأعلى منطقة الرياض  السكان التعداد السكاني غير معروف نسمة (إحصاء ) تعديل مصدري - تعديل   أم العلقاء، هي قرية من فئة (أ) تقع في محافظة السليل، والتابعة لمنطقة الرياض في السعودية. و...

City and municipality in Oaxaca, Mexico Town & Municipality in Oaxaca, MexicoSanta Cruz Xoxocotlán XoxoTown & MunicipalityMunicipal Palace SealSanta Cruz XoxocotlánCoordinates: 17°01′35″N 96°44′00″W / 17.02639°N 96.73333°W / 17.02639; -96.73333Country MexicoStateOaxacaGovernment • Municipal PresidentInocente Castellanos AlejosArea • Municipality76.55 km2 (29.56 sq mi)Elevation (of seat)1,530...

 

 

الحروب الكارليةمعلومات عامةالبلد إسبانيا تاريخ البدء 1833 تاريخ الانتهاء 1876 المشاركون كارليةالليبرالية الإسبانيةCarlist army (en) لديه جزء أو أجزاء الحرب الكارلية الأولىSecond Carlist War (en) الحرب الكارلية الثالثة تعديل - تعديل مصدري - تعديل ويكي بيانات الحروب الكارلية هي سلسلة من الحرو...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!