Galectin-3 is approximately 30 kDa and, like all galectins, contains a carbohydrate-recognition-binding domain (CRD) of about 130 amino acids that enable the specific binding of β-galactosides.[7][9][10][11]
The functional roles of galectins in cellular response to membrane damage are rapidly expanding.[18][19][20] It has been recently shown that Galectin-3 recruits ESCRTs to damaged lysosomes so that lysosomes can be repaired.[19]
Clinical significance
Fibrosis
A correlation between galectin-3 expression levels and various types of fibrosis has been found. Galectin-3 is upregulated in cases of liver fibrosis, renal fibrosis, and idiopathic pulmonary fibrosis (IPF). In several studies with mice deficient in or lacking galectin-3, conditions that caused control mice to develop IPF, renal, or liver fibrosis either induced limited fibrosis or failed to induce fibrosis entirely.[21][22][23] Companies have developed galectin modulators that block the binding of galectins to carbohydrate structures. The galectin-3 inhibitor, TD139 and GR-MD-02 have the potential to treat fibrosis.[23]
Cardiovascular disease
Elevated levels of galectin-3 have been found to be significantly associated with higher risk of death in both acute decompensated heart failure and chronic heart failure populations.[24][25] In normal human, murine, and rat cells galectin-3 levels are low. However, as heart disease progresses, significant upregulation of galectin-3 occurs in the myocardium.[26]
Galectin-3 also may be used as a biomarker to identify at risk individuals, and predict patient response to different drugs and therapies. For instance, galectin-3 levels could be used in early detection of failure-prone hearts and lead to intervention strategies including broad spectrum anti-inflammatory agents.[13] One study concluded that individuals with systolic heart failure of ischaemic origin and elevated galectin-3 levels may benefit from statin treatment.[27] Galectin-3 has also been associated as a factor promoting ventricular remodeling following mitral valve repair, and may identify patients requiring additional therapies to obtain beneficial reverse remodeling.[28]
Cancer
The wide variety of effects of galectin-3 on cancerous cells are due to the unique structure and various interaction properties of the molecule. Overexpression and changes in the localization of galectin-3 molecules affects the prognosis of the patient and targeting the actions of galectin-3 poses a promising therapeutic strategy for the development of effective therapeutic agents for cancer treatment.
The roles of galectins and galectin-3, in particular, in cancer have been heavily investigated.[30] Of note, galectin-3 has been suggested to play important roles in cancer metastasis.[31]
Clinical applications
Cardiovascular risk indicator
Chronic heart failure has been found to be indicated by a galectin-3 tests, using the ARCHITECT immunochemistry platform developed by BG Medicine and marketed by Abbott, helping to determine which patients are most at risk for the disease. This test is also offered on the VIDAS platform marketed by bioMérieux.[32] Pecta-Sol C binds to galectin-3 binding sites on the surfaces of cells as a preventative measure created by Isaac Eliaz in conjunction with EcoNugenics.[33]
Galecto Biotech in Sweden is focused on developing drugs targeting galectin-3 to treat fibrosis, specifically idiopathic pulmonary fibrosis.[35] Galectin Therapeutics in the United States is also targeting galectins for clinical applications. Preclinical studies demonstrate that inhibition of galectin-3 significantly reduces portal hypertension and fibrosis.[36] Galectin Therapeutics galectin-3 inhibitor GR-MD-02 (belapectin) failed phase 3 human clinical trials for nonalcoholic steatohepatitis (NASH). Earlier phase 1 data for belapectin showed increased effectiveness and reduced side effects of cancer immunotherapy.[37][38][39]
Biomarkers
Galectin-3 is increasingly being used as a diagnostic marker for different cancers. It can be screened for and used as a prognostic factor to predict the progression of the cancer. Galectin-3 has varying effects in different types of cancer.[40] One approach to cancers with high galectin-3 expression is to inhibit galectin-3 to enhance treatment response.[41]
^"Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^"Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^Raz A, Carmi P, Raz T, Hogan V, Mohamed A, Wolman SR (April 1991). "Molecular cloning and chromosomal mapping of a human galactoside-binding protein". Cancer Research. 51 (8): 2173–8. PMID2009535.
^Raimond J, Zimonjic DB, Mignon C, Mattei M, Popescu NC, Monsigny M, Legrand A (September 1997). "Mapping of the galectin-3 gene (LGALS3) to human chromosome 14 at region 14q21-22". Mammalian Genome. 8 (9): 706–7. doi:10.1007/s003359900548. PMID9271684. S2CID1955109.
^Lin YH, Lin LY, Wu YW, Chien KL, Lee CM, Hsu RB, et al. (November 2009). "The relationship between serum galectin-3 and serum markers of cardiac extracellular matrix turnover in heart failure patients". Clinica Chimica Acta; International Journal of Clinical Chemistry. 409 (1–2): 96–9. doi:10.1016/j.cca.2009.09.001. PMID19747906.
^de Boer RA, Voors AA, Muntendam P, van Gilst WH, van Veldhuisen DJ (September 2009). "Galectin-3: a novel mediator of heart failure development and progression". European Journal of Heart Failure. 11 (9): 811–7. doi:10.1093/eurjhf/hfp097. PMID19648160. S2CID32686826.
^Martínez-Bosch N, Rodriguez-Vida A, Juanpere N, Lloreta J, Rovira A, Albanell J, et al. (July 2019). "Galectins in prostate and bladder cancer: tumorigenic roles and clinical opportunities". Nature Reviews. Urology. 16 (7): 433–445. doi:10.1038/s41585-019-0183-5. hdl:10261/201560. PMID31015643. S2CID128360958.
^Tinari N, Kuwabara I, Huflejt ME, Shen PF, Iacobelli S, Liu FT (January 2001). "Glycoprotein 90K/MAC-2BP interacts with galectin-1 and mediates galectin-1-induced cell aggregation". International Journal of Cancer. 91 (2): 167–72. doi:10.1002/1097-0215(200002)9999:9999<::aid-ijc1022>3.3.co;2-q. PMID11146440.