Cell adhesion is the process by which cells interact and attach to neighbouring cells through specialised molecules of the cell surface. This process can occur either through direct contact between cell surfaces such as cell junctions or indirect interaction, where cells attach to surrounding extracellular matrix, a gel-like structure containing molecules released by cells into spaces between them.[1] Cells adhesion occurs from the interactions between cell-adhesion molecules (CAMs),[2] transmembrane proteins located on the cell surface. Cell adhesion links cells in different ways and can be involved in signal transduction for cells to detect and respond to changes in the surroundings.[1][3] Other cellular processes regulated by cell adhesion include cell migration and tissue development in multicellular organisms.[4] Alterations in cell adhesion can disrupt important cellular processes and lead to a variety of diseases, including cancer[5][6] and arthritis.[7] Cell adhesion is also essential for infectious organisms, such as bacteria or viruses, to cause diseases.[8][9]
General mechanism
CAMs are classified into four major families: integrins, immunoglobulin (Ig) superfamily, cadherins, and selectins.[2]Cadherins and IgSF are homophilic CAMs, as they directly bind to the same type of CAMs on another cell, while integrins and selectins are heterophilic CAMs that bind to different types of CAMs.[2][citation needed] Each of these adhesion molecules has a different function and recognizes different ligands. Defects in cell adhesion are usually attributable to defects in expression of CAMs.
In multicellular organisms, bindings between CAMs allow cells to adhere to one another and creates structures called cell junctions. According to their functions, the cell junctions can be classified as:[1]
Occluding junctions (tight junctions), which seal gaps between cells through cell–cell contact, making an impermeable barrier for diffusion
Channel-forming junctions (gap junctions), which links cytoplasm of adjacent cells allowing transport of molecules to occur between cells
Signal-relaying junctions, which can be synapses in the nervous system
Alternatively, cell junctions can be categorised into two main types according to what interacts with the cell: cell–cell junctions, mainly mediated by cadherins, and cell–matrix junctions, mainly mediated by integrins.
Cell–cell junctions
Cell–cell junctions can occur in different forms. In anchoring junctions between cells such as adherens junctions and desmosomes, the main CAMs present are the cadherins. This family of CAMs are membrane proteins that mediate cell–cell adhesion through its extracellular domains and require extracellular Ca2+ ions to function correctly.[2] Cadherins forms homophilic attachment between themselves, which results in cells of a similar type sticking together and can lead to selective cell adhesion, allowing vertebrate cells to assemble into organised tissues.[1] Cadherins are essential for cell–cell adhesion and cell signalling in multicellular animals and can be separated into two types: classical cadherins and non-classical cadherins.[2]
Adherens junctions
Adherens junctions mainly function to maintain the shape of tissues and to hold cells together. In adherens junctions, cadherins between neighbouring cells interact through their extracellular domains, which share a conserved calcium-sensitive region in their extracellular domains. When this region comes into contact with Ca2+ ions, extracellular domains of cadherins undergo a conformational change from the inactive flexible conformation to a more rigid conformation in order to undergo homophilic binding. Intracellular domains of cadherins are also highly conserved, as they bind to proteins called catenins, forming catenin-cadherin complexes. These protein complexes link cadherins to actin filaments. This association with actin filaments is essential for adherens junctions to stabilise cell–cell adhesion.[10][11][12] Interactions with actin filaments can also promote clustering of cadherins, which are involved in the assembly of adherens junctions. This is since cadherin clusters promote actin filamentpolymerisation, which in turn promotes the assembly of adherens junctions by binding to the cadherin–catenin complexes that then form at the junction.[citation needed]
Desmosomes
Desmosomes are structurally similar to adherens junctions but composed of different components. Instead of classical cadherins, non-classical cadherins such as desmogleins and desmocollins act as adhesion molecules and they are linked to intermediate filaments instead of actin filaments.[13] No catenin is present in desmosomes, as intracellular domains of desmosomal cadherins interact with desmosomal plaque proteins, which form the thick cytoplasmic plaques in desmosomes and link cadherins to intermediate filaments.[14] Desmosomes provides strength and resistance to mechanical stress by unloading forces onto the flexible but resilient intermediate filaments, something that cannot occur with the rigid actin filaments.[13] This makes desmosomes important in tissues that encounter high levels of mechanical stress, such as heart muscle and epithelia, and explains why it appears frequently in these types of tissues.
Tight junctions
Tight junctions are normally present in epithelial and endothelial tissues, where they seal gaps and regulate paracellular transport of solutes and extracellular fluids in these tissues that function as barriers.[15] Tight junction is formed by transmembrane proteins, including claudins, occludins and tricellulins, that bind closely to each other on adjacent membranes in a homophilic manner.[1] Similar to anchoring junctions, intracellular domains of these tight junction proteins are bound with scaffold proteins that keep these proteins in clusters and link them to actin filaments in order to maintain structure of the tight junction.[16] Claudins, essential for formation of tight junctions, form paracellular pores which allow selective passage of specific ions across tight junctions making the barrier selectively permeable.[15]
Gap junctions
Gap junctions are composed of channels called connexons, which consist of transmembrane proteins called connexins clustered in groups of six.[17] Connexons from adjacent cells form continuous channels when they come into contact and align with each other. These channels allow transport of ions and small molecules between cytoplasm of two adjacent cells, apart from holding cells together and provide structural stability like anchoring junctions or tight junctions.[1] Gap junction channels are selectively permeable to specific ions depending on which connexins form the connexons, which allows gap junctions to be involved in cell signalling by regulating the transfer of molecules involved in signalling cascades.[18] Channels can respond to many different stimuli and are regulated dynamically either by rapid mechanisms, such as voltage gating, or by slow mechanism, such as altering numbers of channels present in gap junctions.[17]
Selectins are a family of specialised CAMs involved in transient cell–cell adhesion occurring in the circulatory system. They mainly mediate the movement of white blood cells (leukocytes) in the bloodstream by allowing the white blood cells to "roll" on endothelial cells through reversible bindings of selections.[19] Selectins undergo heterophilic bindings, as its extracellular domain binds to carbohydrates on adjacent cells instead of other selectins, while it also require Ca2+ ions to function, same as cadherins.[1] Cell–cell adhesion of leukocytes to endothelial cells is important for immune responses as leukocytes can travel to sites of infection or injury through this mechanism.[20] At these sites, integrins on the rolling white blood cells are activated and bind firmly to the local endothelial cells, allowing the leukocytes to stop migrating and move across the endothelial barrier.[20]
Adhesion mediated by members of the immunoglobulin superfamily
The immunoglobulin superfamily (IgSF) is one of the largest superfamily of proteins in the body and it contains many diverse CAMs involved in different functions. These transmembrane proteins have one or more immunoglobulin-like domains in their extracellular domains and undergo calcium-independent binding with ligands on adjacent cells.[21] Some IgSF CAMs, such as neural cell adhesion molecules (NCAMs), can perform homophilic binding while others, such as intercellular cell adhesion molecules (ICAMs) or vascular cell adhesion molecules (VCAMs) undergo heterophilic binding with molecules like carbohydrates or integrins.[22] Both ICAMs and VCAMs are expressed on vascular endothelial cells and they interact with integrins on the leukocytes to assist leukocyte attachment and its movement across the endothelial barrier.[22]
Cell–matrix junctions
Cells create extracellular matrix by releasing molecules into its surrounding extracellular space. Cells have specific CAMs that will bind to molecules in the extracellular matrix and link the matrix to the intracellular cytoskeleton.[1] Extracellular matrix can act as a support when organising cells into tissues and can also be involved in cell signalling by activating intracellular pathways when bound to the CAMs.[2]
Cell–matrix junctions are mainly mediated by integrins, which also clusters like cadherins to form firm adhesions. Integrins are transmembrane heterodimers formed by different α and β subunits, both subunits with different domain structures.[23] Integrins can signal in both directions: inside-out signalling, intracellular signals modifying the intracellular domains, can regulate affinity of integrins for their ligands, while outside-in signalling, extracellular ligands binding to extracellular domains, can induce conformational changes in integrins and initiate signalling cascades.[23] Extracellular domains of integrins can bind to different ligands through heterophilic binding while intracellular domains can either be linked to intermediate filaments, forming hemidesmosomes, or to actin filaments, forming focal adhesions.[24]
Hemidesmosomes
In hemidesmosomes, integrins attach to extracellular matrix proteins called laminins in the basal lamina, which is the extracellular matrix secreted by epithelial cells.[1] Integrins link extracellular matrix to keratin intermediate filaments, which interacts with intracellular domain of integrins via adapter proteins such as plectins and BP230.[25] Hemidesmosomes are important in maintaining structural stability of epithelial cells by anchoring them together indirectly through the extracellular matrix.
Focal adhesions
In focal adhesions, integrins attach fibronectins, a component in the extracellular matrix, to actin filaments inside cells.[24] Adapter proteins, such as talins, vinculins, α-actinins and filamins, form a complex at the intracellular domain of integrins and bind to actin filaments.[26] This multi-protein complex linking integrins to actin filaments is important for assembly of signalling complexes that act as signals for cell growth and cell motility.[26]
Other organisms
Eukaryotes
Plants cells adhere closely to each other and are connected through plasmodesmata, channels that cross the plant cell walls and connect cytoplasms of adjacent plant cells.[27] Molecules that are either nutrients or signals required for growth are transported, either passively or selectively, between plant cells through plasmodesmata.[27]
Protozoans express multiple adhesion molecules with different specificities that bind to carbohydrates located on surfaces of their host cells.[28] cell–cell adhesion is key for pathogenic protozoans to attach en enter their host cells. An example of a pathogenic protozoan is the malarial parasite (Plasmodium falciparum), which uses one adhesion molecule called the circumsporozoite protein to bind to liver cells,[29] and another adhesion molecule called the merozoite surface protein to bind red blood cells.[30]
Pathogenic fungi use adhesion molecules present on its cell wall to attach, either through protein-protein or protein-carbohydrate interactions, to host cells[31] or fibronectins in the extracellular matrix.[32]
Prokaryotes
Prokaryotes have adhesion molecules on their cell surface termed bacterial adhesins, apart from using its pili (fimbriae) and flagella for cell adhesion.[8] Prokaryotes may have a single or several flagella, either located on one or several places on the cell surface. Pathogenic species such as Escherichia coli and Vibrio cholera possess flagella to facilitate adhesion.[33]
Adhesins can recognise a variety of ligands present on the host cell surfaces and also components in the extracellular matrix. These molecules also control host specificity and regulate tropism (tissue- or cell-specific interactions) through their interaction with their ligands.[34]
Viruses
Viruses also have adhesion molecules required for viral binding to host cells. For example, influenza virus has a hemagglutinin on its surface that is required for recognition of the sugarsialic acid on host cell surface molecules.[35]HIV has an adhesion molecule termed gp120 that binds to its ligand CD4, which is expressed on lymphocytes.[36] Viruses can also target components of cell junctions to enter host cells, which is what happens when the hepatitis C virus targets occludins and claudins in tight junctions to enter liver cells.[9]
Clinical implications
Dysfunction of cell adhesion occurs during cancer metastasis. Loss of cell–cell adhesion in metastatic tumour cells allows them to escape their site of origin and spread through the circulatory system.[5] One example of CAMs deregulated in cancer are cadherins, which are inactivated either by genetic mutations or by other oncogenic signalling molecules, allowing cancer cells to migrate and be more invasive.[6] Other CAMs, like selectins and integrins, can facilitate metastasis by mediating cell–cell interactions between migrating metastatic tumour cells in the circulatory system with endothelial cells of other distant tissues.[37] Due to the link between CAMs and cancer metastasis, these molecules could be potential therapeutic targets for cancer treatment.
There are also other human genetic diseases caused by an inability to express specific adhesion molecules. An example is leukocyte adhesion deficiency-I (LAD-I), where expression of the β2 integrin subunit is reduced or lost.[38] This leads to reduced expression of β2 integrin heterodimers, which are required for leukocytes to firmly attach to the endothelial wall at sites of inflammation in order to fight infections.[39] Leukocytes from LAD-I patients are unable to adhere to endothelial cells and patients exhibit serious episodes of infection that can be life-threatening.
An autoimmune disease called pemphigus is also caused by loss of cell adhesion, as it results from autoantibodies targeting a person's own desmosomal cadherins which leads to epidermal cells detaching from each other and causes skin blistering.[40]
Pathogenic microorganisms, including bacteria, viruses and protozoans, have to first adhere to host cells in order to infect and cause diseases. Anti-adhesion therapy can be used to prevent infection by targeting adhesion molecules either on the pathogen or on the host cell.[41] Apart from altering the production of adhesion molecules, competitive inhibitors that bind to adhesion molecules to prevent binding between cells can also be used, acting as anti-adhesive agents.[42]
^ abSteed, Emily; Balda, Maria S.; Matter, Karl (2010). "Dynamics and functions of tight junctions". Trends in Cell Biology. 20 (3): 142–149. doi:10.1016/j.tcb.2009.12.002. PMID20061152.
^ abCilia, Michelle Lynn; Jackson, David (2004). "Plasmodesmata form and function". Current Opinion in Cell Biology. 16 (5): 500–506. doi:10.1016/j.ceb.2004.08.002. PMID15363799.
^Singh, Ram Sarup; Walia, Amandeep Kaur; Kanwar, Jagat Rakesh (2016). "Protozoa lectins and their role in host–pathogen interactions". Biotechnology Advances. 34 (5): 1018–1029. doi:10.1016/j.biotechadv.2016.06.002. PMID27268207.
^Kadekoppala, Madhusudan; Holder, Anthony A. (2010). "Merozoite surface proteins of the malaria parasite: The MSP1 complex and the MSP7 family". International Journal for Parasitology. 40 (10): 1155–1161. doi:10.1016/j.ijpara.2010.04.008. PMID20451527.
^Klemm, Per; Schembri, Mark A. (2000). "Bacterial adhesins: function and structure". International Journal of Medical Microbiology. 290 (1): 27–35. doi:10.1016/S1438-4221(00)80102-2. PMID11043979.
Мелещик Володимир АдамовичНародився 5 грудня 1948(1948-12-05) (74 роки)Діяльність губернаторНауковий ступінь кандидат технічних наукНагороди Заслужений машинобудівник України Почесна грамота Кабінету Міністрів України У Вікіпедії є статті про інших людей із прізвищем Мелещи...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين...
Yesterday kan verwijzen naar: Muziek Yesterday (single van The Beatles), single van The Beatles uit 1965 Yesterday (ep), ep van The Beatles uit 1966 Yesterday (Shanice), een lied van Shanice uit 1998 Yesterday (Toni Braxton), een lied van Toni Braxton uit 2009 Yesterday (Piet Veerman), een nummer van Piet Veerman en Nail Che, gezongen door Piet Veerman (solocarrière 1975-76) Yesterday (The Black Eyed Peas), een nummer van The Black Eyed Peas uit 2015 Yesterday be dead and gone, een nummer va...
Pour les articles homonymes, voir Oural. Oural Héraldique Le centre administratif d'Oural Administration Pays Kazakhstan Province (oblys) Kazakhstan-Occidental Démographie Population 235 819 hab.[1] (2021) Densité 337 hab./km2 Géographie Coordonnées 51° 14′ 00″ nord, 51° 22′ 00″ est Superficie 70 000 ha = 700 km2 Localisation Géolocalisation sur la carte : Kazakhstan Oural Géolocalisation sur la carte&...
Jonathan Silva Datos personalesNombre completo Jonathan Cristian SilvaNacimiento La Plata, Buenos Aires29 de junio de 1994 (29 años)País ArgentinaNacionalidad(es) ArgentinaAltura 1,78 m (5′ 10″)Peso 72 kg (158 lb)Carrera deportivaDeporte FútbolClub profesionalDebut deportivo 2012(Estudiantes de La Plata)Club Albacete BalompiéLiga Segunda División de EspañaPosición Defensor CentralGoles en clubes 11Selección nacionalSelección ARG ArgentinaPart. (goles...
Das Gesetz zur Wiederherstellung des Berufsbeamtentums, kurz Berufsbeamtengesetz (BBG), wurde nach der Machtübernahme der Nationalsozialisten am 7. April 1933 erlassen. Bei dem Titel des Gesetzes handelt es sich um einen irreführenden Kampfbegriff. Schon zuvor hatte in Deutschland ein Berufsbeamtentum bestanden. Das BBG diente dem Ziel, Juden, Menschen jüdischer Herkunft und politisch unerwünschte Personen aus dem Staatsdienst zu entfernen. Inhaltsverzeichnis 1 Inhalt 2 Auswirkung 3 ...
Ítalo-brasileiros de Belo Horizonte Antônio Anastasia Niginho Daniella Cicarelli Letícia Sabatella Max Cavalera Débora Falabella População total Regiões com população significativa Belo Horizonte Línguas Português • Italiano Religiões Maioria Igreja Católica Apostólica Romana Grupos étnicos relacionados Brasileiros brancos • Italianos • Mineiros A cidade de Belo Horizonte, capital de Minas Gerais, conta com uma numerosa colôni...
المشير (بالإنجليزية: Field marshal) هي رتبة عسكرية رفيعة المستوى، وتكون أعلى رتبة في بعض الجيوش.[1][2][3] ويعود أصل التسمية إلى وقت مبكر من العصور الوسطى، تحديداً في زمن ملوك الفرنجة، والتسمية مشتقة من التسمية الألمانية القديمة لحارس خيول الملك (Marh-scalc). في بعض الدول تطل...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Family Blood – news · newspapers · books · scholar · JSTOR (February 2020) (Learn how and when to remove this template message) 2018 American filmFamily BloodTheatrical release posterDirected bySonny MallhiWritten by Nick Savvides Sonny Mallhi Produced by Adam ...
Atletismo nosJogos Pan-Americanos de 2015 Provas de pista 100 m masc fem 200 m masc fem 400 m masc fem 800 m masc fem 1500 m masc fem 5000 m masc fem 10000 m masc fem 100 m com barreiras fem 110 m com barreiras masc 400 m com barreiras masc fem 3000 mcom obstáculos masc fem Revezamento 4×100 m masc fem Revezamento 4×400 m masc fem Provas de estrada Maratona masc fem 20km marcha atlética masc fem 50km marcha atlética masc Provas de campo Salto em distância masc fem Salto triplo m...
Vulva-vulva or vulva-body rubbing Two women rubbing their vulvas together in the missionary position Tribadism (/ˈtrɪbədɪzəm/ TRIB-ə-diz-əm)[1] or tribbing, commonly known by its scissoring position, is a lesbian sexual practice in which a woman rubs her vulva against her partner's body for sexual stimulation, especially for stimulation of the clitoris.[2][3][4] This may involve vulva-to-vulva contact or rubbing the vulva against the partner's thigh, sto...
Телячий мохКраїна УкраїнаРозташування Україна,Житомирська область, Олевський районПлоща 553Засновано 1984Оператор ДП «Білокоровицьке ЛГ»Посилання Телячий мох — гідрологічний заказник місцевого значення. Об'єкт розташований на території Олевського району Житоми�...
Talladega National ForestCheaha Mountain, Alabama's highest point, is located in Talladega National Forest.LocationAlabama, U.S.Nearest cityTalladega, ALCoordinates33°11′46″N 86°27′45″W / 33.19611°N 86.46250°W / 33.19611; -86.46250Area392,567 acres (1,588.66 km2)EstablishedJuly 17, 1936[1]Governing bodyU.S. Forest ServiceWebsitehttp://www.fs.usda.gov/alabama The Talladega National Forest is located in the U.S. state of Alabama and cov...
Style of cycling race One racer propels his partner like a slingshot during a Madison race The Madison is a relay race event in track cycling, named after the first Madison Square Garden in New York, and known as the American race in French (course à l'américaine) and as Americana in Spanish and in Italian. The race The Madison is a race where each team aims to complete more laps than any of the other teams. Riders in each team take turns during the race, handing over to another team member...
Fictional hobbit protagonist in J. R. R. Tolkien's The Lord of the Rings Frodo redirects here. For other uses, see Frodo (disambiguation). Fictional character Frodo BagginsFirst appearanceThe Fellowship of the Ring (1954)Last appearanceBilbo's Last Song (1974)In-universe informationAliasesMr. UnderhillRaceHobbitGenderMaleAffiliationCompany of the RingFamilyBilbo BagginsHomeThe Shire Frodo Baggins is a fictional character in J. R. R. Tolkien's writings, and one of the protagonists in The Lord ...
1919 British Army massacre of Indian protesters Jallianwala Bagh MassacreMartyr's memorial in Jallianwala BaghLocation of Amritsar in PunjabLocationAmritsar, Punjab, British Raj (present-day Punjab, India)Coordinates31°37′14″N 74°52′50″E / 31.62056°N 74.88056°E / 31.62056; 74.88056Date13 April 1919; 104 years ago (1919-04-13) 05:30 p.m (IST)TargetCrowd of nonviolent protesters, along with Baisakhi pilgrims, who had gathered in Jallianwala ...
American television music program For the music festival, see Austin City Limits Music Festival. Austin City LimitsCreated by Bill Arhos Paul Bosner Bruce Scafe Directed by Bruce Scafe (1976–1977) Charles Vaughn (1978) Clark Santee (1979) Allan Muir (1980–82) Gary Menotti (1983–present) Narrated byTerry Lickona (1979–present)Theme music composerGary P. NunnOpening themeLondon Homesick BluesCountry of originUnited StatesNo. of episodes900ProductionRunning time60 minutesProduction compa...
Eugene Beauharnais E. B. Nash (8 March 1838 – 6 November 1917) was one of America's leading 19th-century homeopaths. Born in Hillsdale, New York, Nash graduated from Cleveland Homoeopathic Medical College in 1874. He served as Professor of Materia Medica in the New York Homeopathic Medical College, and also taught at the Homoeopathic Hospital of London. In 1903 he became president of the International Hahnemannian Association (IHA). He is best known as an author of books on homeopathy. His ...
هدى صلاح هدى صلاح ضيفة قناة الروضتين، 16 يونيو 2017 معلومات شخصية اسم الولادة هدى صلاح الميلاد 17 سبتمبر 1983 (العمر 40 سنة)تونس الجنسية تونس الحياة العملية المهنة ممثلة سنوات النشاط 2003 - حتى الآن المواقع السينما.كوم صفحتها على موقع السينما تعديل مصدري - تعديل هدى صلاح (17 ...
Takefusa Kubo久保建英 Kubo pada 2019Informasi pribadiNama lengkap Takefusa Kubo[1][2]Tanggal lahir 4 Juni 2001 (umur 22)[2]Tempat lahir Asao-ku, Kawasaki, JepangTinggi 173 cm (5 ft 8 in)[3]Posisi bermain Gelandang sayapInformasi klubKlub saat ini Real SociedadNomor 14Karier junior2008–2009 FC Persimmon2008–2010 Tokyo Verdy2010–2011 Kawasaki Frontale2011–2015 FC Barcelona2015–2016 FC TokyoKarier senior*Tahun Tim Tampil (Gol)2016...