In biology, the extracellular matrix (ECM),[1][2] also called intercellular matrix (ICM), is a network consisting of extracellularmacromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and biochemical support to surrounding cells.[3][4][5] Because multicellularity evolved independently in different multicellular lineages, the composition of ECM varies between multicellular structures; however, cell adhesion, cell-to-cell communication and differentiation are common functions of the ECM.[6]
The plant ECM includes cell wall components, like cellulose, in addition to more complex signaling molecules.[9] Some single-celled organisms adopt multicellular biofilms in which the cells are embedded in an ECM composed primarily of extracellular polymeric substances (EPS).[10]
Structure
Components of the ECM are produced intracellularly by resident cells and secreted into the ECM via exocytosis.[11] Once secreted, they then aggregate with the existing matrix. The ECM is composed of an interlocking mesh of fibrous proteins and glycosaminoglycans (GAGs).
Proteoglycans
Glycosaminoglycans (GAGs) are carbohydratepolymers and mostly attached to extracellular matrix proteins to form proteoglycans (hyaluronic acid is a notable exception; see below). Proteoglycans have a net negative charge that attracts positively charged sodium ions (Na+), which attracts water molecules via osmosis, keeping the ECM and resident cells hydrated. Proteoglycans may also help to trap and store growth factors within the ECM.
Described below are the different types of proteoglycan found within the extracellular matrix.
Hyaluronic acid (or "hyaluronan") is a polysaccharide consisting of alternating residues of D-glucuronic acid and N-acetylglucosamine, and unlike other GAGs, is not found as a proteoglycan. Hyaluronic acid in the extracellular space confers upon tissues the ability to resist compression by providing a counteracting turgor (swelling) force by absorbing significant amounts of water. Hyaluronic acid is thus found in abundance in the ECM of load-bearing joints. It is also a chief component of the interstitial gel. Hyaluronic acid is found on the inner surface of the cell membrane and is translocated out of the cell during biosynthesis.[15]
Hyaluronic acid acts as an environmental cue that regulates cell behavior during embryonic development, healing processes, inflammation, and tumor development. It interacts with a specific transmembrane receptor, CD44.[16]
Proteins
Collagen
Collagen is the most abundant protein in the ECM, and is the most abundant protein in the human body.[17][18] It accounts for 90% of bone matrix protein content.[19] Collagens are present in the ECM as fibrillar proteins and give structural support to resident cells. Collagen is exocytosed in precursor form (procollagen), which is then cleaved by procollagen proteases to allow extracellular assembly. Disorders such as Ehlers Danlos Syndrome, osteogenesis imperfecta, and epidermolysis bullosa are linked with genetic defects in collagen-encoding genes.[11] The collagen can be divided into several families according to the types of structure they form:
Fibrillar (Type I, II, III, V, XI)
Facit (Type IX, XII, XIV)
Short chain (Type VIII, X)
Basement membrane (Type IV)
Other (Type VI, VII, XIII)
Elastin
Elastins, in contrast to collagens, give elasticity to tissues, allowing them to stretch when needed and then return to their original state. This is useful in blood vessels, the lungs, in skin, and the ligamentum nuchae, and these tissues contain high amounts of elastins. Elastins are synthesized by fibroblasts and smooth muscle cells. Elastins are highly insoluble, and tropoelastins are secreted inside a chaperone molecule, which releases the precursor molecule upon contact with a fiber of mature elastin. Tropoelastins are then deaminated to become incorporated into the elastin strand. Disorders such as cutis laxa and Williams syndrome are associated with deficient or absent elastin fibers in the ECM.[11]
Extracellular vesicles
In 2016, Huleihel et al., reported the presence of DNA, RNA, and Matrix-bound nanovesicles (MBVs) within ECM bioscaffolds.[20] MBVs shape and size were found to be consistent with previously described exosomes. MBVs cargo includes different protein molecules, lipids, DNA, fragments, and miRNAs. Similar to ECM bioscaffolds, MBVs can modify the activation state of macrophages and alter different cellular properties such as; proliferation, migration and cell cycle. MBVs are now believed to be an integral and functional key component of ECM bioscaffolds.
Cell adhesion proteins
Fibronectin
Fibronectins are glycoproteins that connect cells with collagen fibers in the ECM, allowing cells to move through the ECM. Fibronectins bind collagen and cell-surface integrins, causing a reorganization of the cell's cytoskeleton to facilitate cell movement. Fibronectins are secreted by cells in an unfolded, inactive form. Binding to integrins unfolds fibronectin molecules, allowing them to form dimers so that they can function properly. Fibronectins also help at the site of tissue injury by binding to platelets during blood clotting and facilitating cell movement to the affected area during wound healing.[11]
Laminin
Laminins are proteins found in the basal laminae of virtually all animals. Rather than forming collagen-like fibers, laminins form networks of web-like structures that resist tensile forces in the basal lamina. They also assist in cell adhesion. Laminins bind other ECM components such as collagens and nidogens.[11]
Development
There are many cell types that contribute to the development of the various types of extracellular matrix found in the plethora of tissue types. The local components of ECM determine the properties of the connective tissue.
Fibroblasts are the most common cell type in connective tissue ECM, in which they synthesize, maintain, and provide a structural framework; fibroblasts secrete the precursor components of the ECM, including the ground substance. Chondrocytes are found in cartilage and produce the cartilaginous matrix. Osteoblasts are responsible for bone formation.
Physiology
Stiffness and elasticity
The ECM can exist in varying degrees of stiffness and elasticity, from soft brain tissues to hard bone tissues. The elasticity of the ECM can differ by several orders of magnitude. This property is primarily dependent on collagen and elastin concentrations,[4] and it has recently been shown to play an influential role in regulating numerous cell functions.
Cells can sense the mechanical properties of their environment by applying forces and measuring the resulting backlash.[21] This plays an important role because it helps regulate many important cellular processes including cellular contraction,[22]cell migration,[23]cell proliferation,[24]differentiation[25] and cell death (apoptosis).[26]
Inhibition of nonmuscle myosin II blocks most of these effects,[25][23][22] indicating that they are indeed tied to sensing the mechanical properties of the ECM, which has become a new focus in research during the past decade.
Effect on gene expression
Differing mechanical properties in ECM exert effects on both cell behaviour and gene expression.[27] Although the mechanism by which this is done has not been thoroughly explained, adhesion complexes and the actin-myosincytoskeleton, whose contractile forces are transmitted through transcellular structures are thought to play key roles in the yet to be discovered molecular pathways.[22]
Effect on differentiation
ECM elasticity can direct cellular differentiation, the process by which a cell changes from one cell type to another. In particular, naive mesenchymal stem cells (MSCs) have been shown to specify lineage and commit to phenotypes with extreme sensitivity to tissue-level elasticity. MSCs placed on soft matrices that mimic the brain differentiate into neuron-like cells, showing similar shape, RNAi profiles, cytoskeletal markers, and transcription factor levels. Similarly stiffer matrices that mimic muscle are myogenic, and matrices with stiffnesses that mimic collagenous bone are osteogenic.[25]
Stiffness and elasticity also guide cell migration, this process is called durotaxis. The term was coined by Lo CM and colleagues when they discovered the tendency of single cells to migrate up rigidity gradients (towards more stiff substrates)[23] and has been extensively studied since. The molecular mechanisms behind durotaxis are thought to exist primarily in the focal adhesion, a large protein complex that acts as the primary site of contact between the cell and the ECM.[28] This complex contains many proteins that are essential to durotaxis including structural anchoring proteins (integrins) and signaling proteins (adhesion kinase (FAK), talin, vinculin, paxillin, α-actinin, GTPases etc.) which cause changes in cell shape and actomyosin contractility.[29] These changes are thought to cause cytoskeletal rearrangements in order to facilitate directional migration.
Function
Due to its diverse nature and composition, the ECM can serve many functions, such as providing support, segregating tissues from one another, and regulating intercellular communication. The extracellular matrix regulates a cell's dynamic behavior. In addition, it sequesters a wide range of cellular growth factors and acts as a local store for them.[7] Changes in physiological conditions can trigger protease activities that cause local release of such stores. This allows the rapid local growth-factor-mediated activation of cellular functions without de novo synthesis.
The stiffness and elasticity of the ECM has important implications in cell migration, gene expression,[31] and differentiation.[25] Cells actively sense ECM rigidity and migrate preferentially towards stiffer surfaces in a phenomenon called durotaxis.[23] They also detect elasticity and adjust their gene expression accordingly, which has increasingly become a subject of research because of its impact on differentiation and cancer progression.[32]
In the brain, where hyaluronan is the main ECM component, the matrix displays both structural and signaling properties. High-molecular weight hyaluronan acts as a diffusional barrier that can modulate diffusion in the extracellular space locally. Upon matrix degradation, hyaluronan fragments are released to the extracellular space, where they function as pro-inflammatory molecules, orchestrating the response of immune cells such as microglia.[33]
Cell adhesion
Many cells bind to components of the extracellular matrix. Cell adhesion can occur in two ways; by focal adhesions, connecting the ECM to actin filaments of the cell, and hemidesmosomes, connecting the ECM to intermediate filaments such as keratin. This cell-to-ECM adhesion is regulated by specific cell-surface cellular adhesion molecules (CAM) known as integrins. Integrins are cell-surface proteins that bind cells to ECM structures, such as fibronectin and laminin, and also to integrin proteins on the surface of other cells.
Fibronectins bind to ECM macromolecules and facilitate their binding to transmembrane integrins. The attachment of fibronectin to the extracellular domain initiates intracellular signalling pathways as well as association with the cellular cytoskeleton via a set of adaptor molecules such as actin.[8]
Extracellular matrix has been found to cause regrowth and healing of tissue. Although the mechanism of action by which extracellular matrix promotes constructive remodeling of tissue is still unknown, researchers now believe that Matrix-bound nanovesicles (MBVs) are a key player in the healing process.[20][34] In human fetuses, for example, the extracellular matrix works with stem cells to grow and regrow all parts of the human body, and fetuses can regrow anything that gets damaged in the womb. Scientists have long believed that the matrix stops functioning after full development. It has been used in the past to help horses heal torn ligaments, but it is being researched further as a device for tissue regeneration in humans.[35]
In terms of injury repair and tissue engineering, the extracellular matrix serves two main purposes. First, it prevents the immune system from triggering from the injury and responding with inflammation and scar tissue. Next, it facilitates the surrounding cells to repair the tissue instead of forming scar tissue.[35]
For medical applications, the required ECM is usually extracted from pig bladders, an easily accessible and relatively unused source. It is currently being used regularly to treat ulcers by closing the hole in the tissue that lines the stomach, but further research is currently being done by many universities as well as the U.S. Government for wounded soldier applications. As of early 2007, testing was being carried out on a military base in Texas. Scientists are using a powdered form on Iraq War veterans whose hands were damaged in the war.[36]
Not all ECM devices come from the bladder. Extracellular matrix coming from pig small intestine submucosa are being used to repair "atrial septal defects" (ASD), "patent foramen ovale" (PFO) and inguinal hernia. After one year, 95% of the collagen ECM in these patches has been replaced by the body with the normal soft tissue of the heart.[37]
Extracellular matrix proteins are commonly used in cell culture systems to maintain stem and precursor cells in an undifferentiated state during cell culture and function to induce differentiation of epithelial, endothelial and smooth muscle cells in vitro. Extracellular matrix proteins can also be used to support 3D cell culture in vitro for modelling tumor development.[38]
A class of biomaterials derived from processing human or animal tissues to retain portions of the extracellular matrix are called ECM Biomaterial.
In plants
Plant cells are tessellated to form tissues. The cell wall is the relatively rigid structure surrounding the plant cell. The cell wall provides lateral strength to resist osmoticturgor pressure, but it is flexible enough to allow cell growth when needed; it also serves as a medium for intercellular communication. The cell wall comprises multiple laminate layers of cellulosemicrofibrils embedded in a matrix of glycoproteins, including hemicellulose, pectin, and extensin. The components of the glycoprotein matrix help cell walls of adjacent plant cells to bind to each other. The selective permeability of the cell wall is chiefly governed by pectins in the glycoprotein matrix. Plasmodesmata (singular: plasmodesma) are pores that traverse the cell walls of adjacent plant cells. These channels are tightly regulated and selectively allow molecules of specific sizes to pass between cells.[15]
In Pluriformea and Filozoa
The extracellular matrix functionality of animals (Metazoa) developed in the common ancestor of the Pluriformea and Filozoa, after the Ichthyosporea diverged.[39]
History
The importance of the extracellular matrix has long been recognized (Lewis, 1922), but the usage of the term is more recent (Gospodarowicz et al., 1979).[40][41][42][43]
^ abLodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J (2008). "Integrating Cells Into Tissues". Molecular Cell Biology (5th ed.). New York: WH Freeman and Company. pp. 197–234.
^Karsenty G, Park RW (1995). "Regulation of type I collagen genes expression". International Reviews of Immunology. 12 (2–4): 177–85. doi:10.3109/08830189509056711. PMID7650420.
^Wang HB, Dembo M, Wang YL (November 2000). "Substrate flexibility regulates growth and apoptosis of normal but not transformed cells". American Journal of Physiology. Cell Physiology. 279 (5): C1345-50. doi:10.1152/ajpcell.2000.279.5.C1345. PMID11029281.
^"First Ever Implantation of Bioabsorbable Biostar Device at DHZB". DHZB NEWS. December 2007. Archived from the original on 2008-12-11. Retrieved 2008-08-05. The almost transparent collagen matrix consists of medically purified pig intestine, which is broken down by the scavenger cells (macrophages) of the immune system. After about 1 year the collagen has been almost completely (90-95%) replaced by normal body tissue: only the tiny metal framework remains. An entirely absorbable implant is currently under development.
^Gospodarowicz D, Vlodovsky I, Greenburg G, Johnson LK (1979). "Cellular shape is determined by the extracellular matrix and is responsible for the control of cellular growth and function". In Sato GH, Ross R (eds.). Hormones and Cell Culture. Coldspring Harbor Laboratory. p. 561. ISBN9780879691257.
^Rieger R, Michaelis A, Green MM (2012-12-06). Glossary of Genetics: Classical and Molecular (5th ed.). Berlin: Springer-Verlag. p. 553. ISBN9783642753336.
Coordenadas: 51° 28' 52 N 0° 0' 14 O Fachada de Queen's House. A Queen's House é um palácio da Inglaterra situado no borough de Greenwich, em Londres. Foi desenhada e iniciada entre 1614 e 1617 pelo arquitecto Inigo Jones, no início da sua carreira arquitectónica, para a Rainha Ana da Dinamarca, a esposa do Rei Jaime I. O palácio foi alterado e completado por Jones, numa segunda campanha cerca de 1635, para a Rainha Henriqueta Maria de França, esposa do Rei Carlos I.[1...
1945 film by Otto Preminger, Ernst Lubitsch A Royal Scandaltheatrical posterDirected byOtto PremingerScreenplay byEdwin Justus MayerBruno Frank (adaptation)Based onDie Zarin by Lajos Bíró Melchior LengyelProduced byErnst LubitschStarringTallulah BankheadCharles CoburnAnne BaxterWilliam EytheCinematographyArthur MillerEdited byDorothy SpencerMusic byAlfred NewmanProductioncompanyTwentieth Century FoxDistributed byTwentieth Century FoxRelease date April 11, 1945 (1945-04-11) Ru...
Chile nos Jogos Olímpicos de Inverno de 1956 Comitê Olímpico Nacional Código do COI CHI Nome Comité Olímpico de Chile«site oficial» (em espanhol) Jogos Olímpicos de Inverno de 1956 Sede Cortina d'Ampezzo, Itália Competidores 4 em 1 esporte Medalhas Pos.n/d 0 0 0 0 Participações nos Jogos Olímpicos Verão 1896 • 1900–1908 • 1912 • 1920 • 1924 • 1928 • 1932 • 1936 • 1948 • 1952 • 1956 • 1960 • 1964 • 1968 • 1972 • 1976 • 1980 • 19...
Coast guard vessel María Júlía in Ísafjörður harbour in 2012 History Iceland NameMaría Júlía NamesakeMaría Júlía Gísladóttir Commissioned1950 Decommissioned1969 FateMuseum ship General characteristics Displacement137 t Length27.5 m (90 ft) Armament47 mm cannon María Júlía is a former coast guard vessel, operated by Icelandic Coast Guard from 1950 to 1969 as a rescue, research and patrol ship. It served in the first Cod Wars conflict between Iceland and the United Ki...
The funiculaire du pic du Jer The funicular above Lourdes The funiculaire du pic du Jer, or Pic du Jer funicular, is a funicular railway in the French département of Hautes-Pyrénées. It links the pilgrimage town of Lourdes with the summit of the nearby Pic du Jer. The funicular was constructed in 1900.[1] The funicular has the following technical parameters:[1][2] Length: 1,100 metres (3,609 ft) Height: 473 metres (1,552 ft) Maximum steepness: 56 % Co...
American college football season 2018 Delaware Fightin' Blue Hens footballNCAA Division I First Round, L 6–20 at James MadisonConferenceColonial Athletic AssociationRankingSTATSNo. 24FCS CoachesNo. 23Record7–5 (5–3 CAA)Head coachDanny Rocco (2nd season)Offensive coordinatorSean Devine (2nd season)Defensive coordinatorChris Cosh (2nd season)Home stadiumDelaware Stadium(capacity: 22,000)Seasons← 20172019 → 2018 Colonial Athletic Associat...
1934 American Western film by Leo McCarey Belle of the NinetiesTheatrical posterDirected byLeo McCareyWritten byMae WestProduced byWilliam LeBaronStarringMae WestRoger PryorJohn Mack BrownKatherine DeMilleDuke EllingtonCinematographyKarl StrussEdited byLeRoy StoneMusic byArthur JohnstonProductioncompanyParamount PicturesDistributed byParamount PicturesRelease date September 21, 1934 (1934-09-21) Running time75 minutesCountryUnited StatesLanguageEnglishBudget$800,000 (estimated)...
City car produced by Honda Motor vehicle Honda Brio2020 Honda Brio Satya E (DD1, Indonesia)OverviewManufacturerHondaProductionMarch 2011 – presentBody and chassisClassCity carBody style5-door hatchbackLayoutFront-engine, front-wheel-drivePlatformHonda Global Small Car[1]RelatedHonda Amaze (first generation)Honda Mobilio (second generation)Honda BR-V (first generation) The Honda Brio is a city car produced by Honda since 2011. It is mainly sold in Southeast Asia and also in othe...
For other people named Tommy Parker, see Tommy Parker (disambiguation). American judge (born 1963) Tommy ParkerJudge of the United States District Court for the Western District of TennesseeIncumbentAssumed office January 30, 2018Appointed byDonald TrumpPreceded bySamuel H. Mays Jr. Personal detailsBornThomas Lee Robinson Parker1963 (age 59–60)Memphis, Tennessee, U.S.Political partyRepublicanEducationUniversity of South Carolina (BS)Vanderbilt University (JD) Thomas Lee Robinso...
American baseball player and manager (1928–1989) For other people known by this name, see Billy Martin (disambiguation). Baseball player Billy MartinMartin with the Yankees in 1954Second baseman / ManagerBorn: (1928-05-16)May 16, 1928Berkeley, California, U.S.Died: December 25, 1989(1989-12-25) (aged 61)Johnson City, New York, U.S.Batted: RightThrew: RightMLB debutApril 18, 1950, for the New York YankeesLast MLB appearanceOctober 1, 1961, for the Minnesota...
Mountain indigenous townshipShizi Township獅子鄉Mountain indigenous townshipShizi Township in Pingtung CountyLocationPingtung County, TaiwanArea • Total301 km2 (116 sq mi)Population (September 2023) • Total4,808 • Density16/km2 (41/sq mi) Shizi Township Entrance to Shizi Township Hall Shizi Township[1] is a mountain indigenous township in Pingtung County, Taiwan. It is the largest township of the county. The main populati...
У Вікіпедії є статті про інші значення цього терміна: Частина. Військо́ва части́на (скорочення в/ч) — основна військова одиниця постійної організації в збройних силах, що організаційно може входити до складу більшої військової частини або з'єднання. Під поняттям «час...
Railway maintenance facility in Borough of Haringey, London The area around Hornsey railway station in Hornsey (London Borough of Haringey) has been the site of several railway maintenance facilities from the mid 19th century onwards. Initial developments included two two-road engine sheds, built east of the station (1866) and north of the station. In 1899 a substantial eight-road engine shed was built east of the station. In c.1973 an electric multiple unit maintenance depot[note 1] ...
American actress and singer (born 1954) Pia ZadoraScreenshot from the movie Santa Claus Conquers the Martians. Featured are the Martian children characters Bomar (Chris Month, left) and Girmar (Pia Zadora).BornPia Alfreda Schipani (1954-05-04) May 4, 1954 (age 69)Hoboken, New Jersey, U.S.OccupationsActresssingerYears active1964–presentSpouses Meshulam Riklis (m. 1977; div. 1993) Jonathan Kaufer (m. 199...
Kawasan Metropolitan Jakarta Jakarta RayaJabodetabekpunjurKawasan metropolitanDari atas, kiri ke kanan: pusat DKI Jakarta dari Monas, Kota Bogor dan Gunung Salak, cakrawala Kota Depok, pemandangan Kota Tangerang dari udara, Cakrawala Kota Bekasi pada malam hari, potret Stasiun Manggarai yang menjadi stasiun paling sibuk se - Jabodetabekpunjur, pemandangan Gunung Pangrango dari Cianjur, dan Gunung Kanaga, Jonggol yang berada di lintas Transyogi (Alternatif Jakarta - Jonggol - Cianjur/Kawasan P...
Church in Mansfield, United KingdomSt Philip Neri Church53°08′54″N 1°12′04″W / 53.1483°N 1.201°W / 53.1483; -1.201OS grid referenceSK535615LocationMansfieldCountryUnited KingdomDenominationRoman CatholicWebsiteStPhilipMansfield.comHistoryStatusActiveFounder(s)Edward BagshaweDedicationPhilip NeriArchitectureFunctional statusParish churchHeritage designationGrade II listedDesignated18 January 1994[1]Architect(s)Charles A. EdesonStyleItalian BaroqueGr...