Dependent type

In computer science and logic, a dependent type is a type whose definition depends on a value. It is an overlapping feature of type theory and type systems. In intuitionistic type theory, dependent types are used to encode logic's quantifiers like "for all" and "there exists". In functional programming languages like Agda, ATS, Coq, F*, Epigram, Idris, and Lean, dependent types help reduce bugs by enabling the programmer to assign types that further restrain the set of possible implementations.

Two common examples of dependent types are dependent functions and dependent pairs. The return type of a dependent function may depend on the value (not just type) of one of its arguments. For instance, a function that takes a positive integer may return an array of length , where the array length is part of the type of the array. (Note that this is different from polymorphism and generic programming, both of which include the type as an argument.) A dependent pair may have a second value, the type of which depends on the first value. Sticking with the array example, a dependent pair may be used to pair an array with its length in a type-safe way.

Dependent types add complexity to a type system. Deciding the equality of dependent types in a program may require computations. If arbitrary values are allowed in dependent types, then deciding type equality may involve deciding whether two arbitrary programs produce the same result; hence the decidability of type checking may depend on the given type theory's semantics of equality, that is, whether the type theory is intensional or extensional.[1]

History

In 1934, Haskell Curry noticed that the types used in typed lambda calculus, and in its combinatory logic counterpart, followed the same pattern as axioms in propositional logic. Going further, for every proof in the logic, there was a matching function (term) in the programming language. One of Curry's examples was the correspondence between simply typed lambda calculus and intuitionistic logic.[2]

Predicate logic is an extension of propositional logic, adding quantifiers. Howard and de Bruijn extended lambda calculus to match this more powerful logic by creating types for dependent functions, which correspond to "for all", and dependent pairs, which correspond to "there exists".[3]

Because of this, and other work by Howard, propositions-as-types is known as the Curry–Howard correspondence.

Formal definition

Loosely speaking, dependent types are similar to the type of an indexed family of sets. More formally, given a type in a universe of types , one may have a family of types , which assigns to each term a type . We say that the type varies with .

Π type

A function whose type of return value varies with its argument (i.e. there is no fixed codomain) is a dependent function and the type of this function is called dependent product type, pi-type (Π type) or dependent function type.[4] From a family of types we may construct the type of dependent functions , whose terms are functions that take a term and return a term in . For this example, the dependent function type is typically written as or .

If is a constant function, the corresponding dependent product type is equivalent to an ordinary function type. That is, is judgmentally equal to when does not depend on .

The name 'Π-type' comes from the idea that these may be viewed as a Cartesian product of types. Π-types can also be understood as models of universal quantifiers.

For example, if we write for n-tuples of real numbers, then would be the type of a function which, given a natural number n, returns a tuple of real numbers of size n. The usual function space arises as a special case when the range type does not actually depend on the input. E.g. is the type of functions from natural numbers to the real numbers, which is written as in typed lambda calculus.

For a more concrete example, taking to be the type of unsigned integers from 0 to 255 (the ones that fit into 8 bits or 1 byte) and for , then devolves into the product of .

Σ type

The dual of the dependent product type is the dependent pair type, dependent sum type, sigma-type, or (confusingly) dependent product type.[4] Sigma-types can also be understood as existential quantifiers. Continuing the above example, if, in the universe of types , there is a type and a family of types , then there is a dependent pair type . (The alternative notations are similar to that of Π types.)

The dependent pair type captures the idea of an ordered pair where the type of the second term is dependent on the value of the first. If then and . If is a constant function, then the dependent pair type becomes (is judgementally equal to) the product type, that is, an ordinary Cartesian product .[4]

For a more concrete example, taking to again be type of unsigned integers from 0 to 255, and to again be equal to for 256 more arbitrary , then devolves into the sum .

Example as existential quantification

Let be some type, and let . By the Curry–Howard correspondence, can be interpreted as a logical predicate on terms of . For a given , whether the type is inhabited indicates whether satisfies this predicate. The correspondence can be extended to existential quantification and dependent pairs: the proposition is true if and only if the type is inhabited.

For example, is less than or equal to if and only if there exists another natural number such that . In logic, this statement is codified by existential quantification:

This proposition corresponds to the dependent pair type:

That is, a proof of the statement that is less than or equal to is a pair that contains both a non-negative number , which is the difference between and , and a proof of the equality .

Systems of the lambda cube

Henk Barendregt developed the lambda cube as a means of classifying type systems along three axes. The eight corners of the resulting cube-shaped diagram each correspond to a type system, with simply typed lambda calculus in the least expressive corner, and calculus of constructions in the most expressive. The three axes of the cube correspond to three different augmentations of the simply typed lambda calculus: the addition of dependent types, the addition of polymorphism, and the addition of higher kinded type constructors (functions from types to types, for example). The lambda cube is generalized further by pure type systems.

First order dependent type theory

The system of pure first order dependent types, corresponding to the logical framework LF, is obtained by generalising the function space type of the simply typed lambda calculus to the dependent product type.

Second order dependent type theory

The system of second order dependent types is obtained from by allowing quantification over type constructors. In this theory the dependent product operator subsumes both the operator of simply typed lambda calculus and the binder of System F.

Higher order dependently typed polymorphic lambda calculus

The higher order system extends to all four forms of abstraction from the lambda cube: functions from terms to terms, types to types, terms to types and types to terms. The system corresponds to the calculus of constructions whose derivative, the calculus of inductive constructions is the underlying system of the Coq proof assistant.

Simultaneous programming language and logic

The Curry–Howard correspondence implies that types can be constructed that express arbitrarily complex mathematical properties. If the user can supply a constructive proof that a type is inhabited (i.e., that a value of that type exists) then a compiler can check the proof and convert it into executable computer code that computes the value by carrying out the construction. The proof checking feature makes dependently typed languages closely related to proof assistants. The code-generation aspect provides a powerful approach to formal program verification and proof-carrying code, since the code is derived directly from a mechanically verified mathematical proof.

Comparison of languages with dependent types

Language Actively developed Paradigm[a] Tactics Proof terms Termination checking Types can depend on[b] Universes Proof irrelevance Program extraction Extraction erases irrelevant terms
Ada 2012 Yes[5] Imperative Yes[6] No ? Any term[c] ? ? Ada ?
Agda Yes[7] Purely functional Few/limited[d] Yes Yes (optional) Any term Yes (optional)[e] Proof-irrelevant arguments[9] Proof-irrelevant propositions[10] Haskell, JavaScript Yes[9]
ATS Yes[11] Functional / imperative No[12] Yes Yes Static terms[13] ? Yes Yes Yes
Cayenne No Purely functional No Yes No Any term No No ? ?
Gallina
(Coq)
Yes[14] Purely functional Yes Yes Yes Any term Yes[f] Yes[15] Haskell, Scheme, OCaml Yes
Dependent ML No[g] ? ? Yes ? Natural numbers ? ? ? ?
F* Yes[16] Functional and imperative Yes[17] Yes Yes (optional) Any pure term Yes Yes OCaml, F#, and C Yes
Guru No[18] Purely functional[19] hypjoin[20] Yes[19] Yes Any term No Yes Carraway Yes
Idris Yes[21] Purely functional[22] Yes[23] Yes Yes (optional) Any term Yes No Yes Yes[23]
Lean Yes Purely functional Yes Yes Yes Any term Yes Yes Yes Yes
Matita Yes[24] Purely functional Yes Yes Yes Any term Yes Yes OCaml Yes
NuPRL Yes Purely functional Yes Yes Yes Any term Yes ? Yes ?
PVS Yes ? Yes ? ? ? ? ? ? ?
Sage Archived 2020-11-09 at the Wayback Machine No[h] Purely functional No No No ? No ? ? ?
SPARK 2014 Yes[25] Imperative Yes[26] Yes[27] Yes[28] Any term[i] ? ? Ada and C[29] Yes[30]
Twelf Yes Logic programming ? Yes Yes (optional) Any (LF) term No No ? ?
  1. ^ This refers to the core language, not to any tactic (theorem proving procedure) or code generation sublanguage.
  2. ^ Subject to semantic constraints, such as universe constraints
  3. ^ Static_Predicate for restricted terms, Dynamic_Predicate for Assert-like checking of any term in type cast
  4. ^ Ring solver[8]
  5. ^ Optional universes, optional universe polymorphism, and optional explicitly specified universes
  6. ^ Universes, automatically inferred universe constraints (not the same as Agda's universe polymorphism) and optional explicit printing of universe constraints
  7. ^ Has been superseded by ATS
  8. ^ Last Sage paper and last code snapshot are both dated 2006
  9. ^ Static_Predicate for restricted terms, Dynamic_Predicate for Assert-like checking of any term in type cast

See also

References

  1. ^ Hofmann, Martin (1995), Extensional concepts in intensional type theory (PDF)
  2. ^ Sørensen, Morten Heine B.; Urzyczyn, Pawel (1998), Lectures on the Curry-Howard Isomorphism, CiteSeerX 10.1.1.17.7385
  3. ^ Bove, Ana; Dybjer, Peter (2008). Dependent Types at Work (PDF) (Report). Chalmers University of Technology.
  4. ^ a b c Altenkirch, Thorsten; Danielsson, Nils Anders; Löh, Andres; Oury, Nicolas (2010). "ΠΣ: Dependent Types without the Sugar" (PDF). In Blume, Matthias; Kobayashi, Naoki; Vidal, Germán (eds.). Functional and Logic Programming, 10th International Symposium, FLOPS 2010, Sendai, Japan, April 19-21, 2010. Proceedings. Lecture Notes in Computer Science. Vol. 6009. Springer. pp. 40–55. doi:10.1007/978-3-642-12251-4_5.
  5. ^ "GNAT Ada installation using ALIRE".
  6. ^ "§3.2.4 Subtype Predicates". Ada Reference Manual (2012 ed.).
  7. ^ "Agda download page".
  8. ^ "Agda Ring Solver".
  9. ^ a b "Announce: Agda 2.2.8". Archived from the original on 2011-07-18. Retrieved 2010-09-28.
  10. ^ "Agda 2.6.0 changelog".
  11. ^ "ATS2 downloads".
  12. ^ "email from ATS inventor Hongwei Xi".
  13. ^ Xi, Hongwei (March 2017). "Applied Type System: An Approach to Practical Programming with Theorem-Proving" (PDF). arXiv:1703.08683.
  14. ^ "Coq changes in Subversion repository".
  15. ^ "Introduction of SProp in Coq 8.10".
  16. ^ "F* changes on GitHub". GitHub.
  17. ^ "F* v0.9.5.0 release notes on GitHub". GitHub.
  18. ^ "Guru SVN".
  19. ^ a b Aaron Stump (6 April 2009). "Verified Programming in Guru" (PDF). Archived from the original (PDF) on 29 December 2009. Retrieved 28 September 2010.
  20. ^ Petcher, Adam (May 2008). Deciding Joinability Modulo Ground Equations in Operational Type Theory (PDF) (MSc). Washington University. Retrieved 14 October 2010.
  21. ^ "Idris git repository". GitHub. 17 May 2022.
  22. ^ Brady, Edwin. "Idris, a language with dependent types — extended abstract" (PDF). CiteSeerX 10.1.1.150.9442.
  23. ^ a b Brady, Edwin. "How does Idris compare to other dependently-typed programming languages?".
  24. ^ "Matita SVN". Archived from the original on 2006-05-08. Retrieved 2010-09-29.
  25. ^ "SPARK installation using ALIRE".
  26. ^ "§3.2.4 Subtype Predicates". Ada Reference Manual (2012 ed.).
  27. ^ "5.11.6. SPARK Lemma Library". SPARK User's Guide (25.0 ed.).
  28. ^ "5.2.8. Contracts for Termination". SPARK User's Guide (25.0 ed.).
  29. ^ "1.2. Calling and Using CCG". GNAT Pro Common Code Generator Users's Guide Supplement (25.0 ed.).
  30. ^ "Compiling with a non-SPARK Aware Compiler". SPARK User's Guide (25.0 ed.).

Further reading

Read other articles:

بروتستانتيةمعلومات عامةصنف فرعي من مسيحية غربية البداية 10 نوفمبر 1517 (جريجوري) الدِّين المسيحية سُمِّي باسم Protestation at Speyer (en) يمارسها Protestant (en) مفصولة عن الكنيسة الرومانية الكاثوليكية(1517 – ) لديه جزء أو أجزاء لوثريةكالفينيةميثودية تعديل - تعديل مصدري - تعديل ويكي بيانات جزء من

 

عنتمركبات القتال المدرعة في  إسرائيلالدبابات القتالية ميركافا مجاح سابرا شوط أخرى أيه أم أكس-13 إم 4 شيرمان سوبر شيرمان إم-48 باتون إم-60 باتون إتش-35 إي إس-3 إم 22 لوكست خيارات العرض الأولية يُمكن استخدام وسيط |وضع= لضبط خيارات عرض القالب الأوليّة: |وضع=collapsed: {{مركبات القتال الم...

 

American TV series or program Somebody's DaughterGenreCrimeDramaWritten byLauren CurrierDirected byJoseph SargentStarring Nicollette Sheridan Nick Mancuso Boyd Kestner Michael Cavanaugh Max Gail Richard Lineback Theme music composerCharles BernsteinCountry of originUnited StatesOriginal languageEnglishProductionExecutive producerKaren Danaher-DorrProducerJoseph SargentCinematographyKees Van OostrumEditorWende Phifer MateRunning time96 minutesProduction companies Karen Danaher-Door Produc...

2011 single by Keyshia ColeTake Me AwaySingle by Keyshia Colefrom the album Calling All Hearts ReleasedApril 14, 2011Recorded2010GenreDance-popR&BLength3:47LabelGeffenSongwriter(s)Keyshia Cole, Teray JonesProducer(s)Chink SantanaKeyshia Cole singles chronology Long Way Down (2010) Take Me Away (2011) Enough of No Love (2012) Take Me Away is a song recorded by American singer Keyshia Cole. It serves as the second and last single on her fourth studio album Calling All Hearts. Music video Th...

 

PT Kawasan Industri MedanJenisPerseroan terbatasIndustriKawasan industriDidirikan7 Oktober 1988; 35 tahun lalu (1988-10-07)KantorpusatDeli Serdang, IndonesiaWilayah operasiIndonesiaTokohkunciNgurah Wirawan[1](Direktur Utama)Muhyan Tambuse[1](Komisaris Utama)JasaPenyewaan dan penjualan lahan dan bangunanPergudanganDepo peti kemasPusat Logistik BerikatPenyediaan air bersihPengolahan limbahPengembangan fasilitas pendukungPendapatanRp 200,487 milyar (2020)[2]Laba bers...

 

Die „Hanseatischen Departements“ Das Département des Bouches-du-Weser (dt. Departement Wesermündung) war das Departement Nr. 129 des französischen Kaiserreiches und bestand aus deutschen Territorien. Es wurde eingerichtet mit Wirkung zum 1. Januar 1811 als eines der hanseatischen Departements nach der Annexion Hollands und der deutschen Nordseeküste durch Frankreich. Inhaltsverzeichnis 1 Lage 2 Geschichte 3 Siehe auch 4 Literatur 5 Einzelnachweise Lage Das Departement Wesermündung wu...

1949 film by Frank McDonald RingsideFilm posterDirected byFrank McDonaldWritten byRon Ormond (adaptation)Story byDaniel B. UllmanProduced byRon OrmondStarringDon Red BarryTom BrownSheila RyanCinematographyErnest MillerEdited byHugh WinnMusic byWalter GreeneProductioncompanyLippert PicturesDistributed byScreen Guild ProductionsRelease date 14 July 1949 (1949-07-14) Running time68 minutesCountryUnited StatesLanguageEnglish Ringside is a 1949 American film noir drama sport film di...

 

Napoleone Bonaparte come Marte pacificatoreAutoreAntonio Canova Data1810 Materialebronzo UbicazioneCortile d'onore del palazzo di Brera, Milano Coordinate45°28′19.16″N 9°11′17.34″E / 45.47199°N 9.18815°E45.47199; 9.18815Coordinate: 45°28′19.16″N 9°11′17.34″E / 45.47199°N 9.18815°E45.47199; 9.18815 Napoleone Bonaparte come Marte pacificatore è una scultura in bronzo di Antonio Canova (copia dell'originale in marmo) posta al centro del co...

 

أمبرية    علم شعار   الإحداثيات 42°59′00″N 12°34′00″E / 42.983333333333°N 12.566666666667°E / 42.983333333333; 12.566666666667  [1] تاريخ التأسيس 2 يناير 1927  تقسيم إداري  البلد إيطاليا[2][3]  التقسيم الأعلى إيطاليا  العاصمة بِروجَة  التقسيمات الإدارية مقاطعة بِر...

جزء من سلسلة مقالات حولالإسلام العقيدة الإيمان توحيد الله الإيمان بالملائكة الإيمان بالكتب السماوية الإيمان بالرسل والأنبياء الإيمان باليوم الآخر الإيمان بالقضاء والقدر أركان الإسلام شهادة أن لا إله إلا الله وأن محمد رسول الله إقامة الصلاة إيتاء الزكاة صوم رمضان الحج م...

 

American basketball player (born 1986) Glen DavisDavis with the Orlando Magic in 2012Charlotte Purple JacketsPositionCenter, Power ForwardLeagueThe Basketball LeaguePersonal informationBorn (1986-01-01) January 1, 1986 (age 37)Baton Rouge, Louisiana, U.S.NationalityAmericanListed height6 ft 9 in (2.06 m)Listed weight289 lb (131 kg)Career informationHigh schoolLSU Laboratory School(Baton Rouge, Louisiana)CollegeLSU (2004–2007)NBA draft2007: 2nd round, 35th overa...

 

Montenegrin basketball coach and player Duško IvanovićIvanović as Crvena zvezda head coach in 2022Saski BaskoniaPositionHead coachLeagueLiga ACBEuroLeaguePersonal informationBorn (1957-09-01) September 1, 1957 (age 66)Bijelo Polje, PR Montenegro, FPR YugoslaviaNationalityMontenegrinListed height6 ft 5 in (1.96 m)Listed weight210 lb (95 kg)Career informationNBA draft1979: undraftedPlaying career1980–1994PositionShooting guard / small forwardCoaching career199...

Yoneda Torao (Japanese: 米田虎雄) (March 10, 1839 – November 27, 1915) was an Imperial Japanese Army veteran of the Boshin War. He was born in Kumamoto Prefecture. He was Grand Chamberlain of Japan (1878-1884). He was recipient of the Order of the Rising Sun (2nd class, 1895; 1st class, 1915)[1][2] and the Order of the Sacred Treasure (3rd class, 1888; 1st class, 1908).[3][4] Preceded byYamaguchi Tadasada Grand Chamberlain of Japan 1878–1884 Succee...

 

National Van Lines, Inc.IndustryMoving and storageFounded1929; 94 years ago (1929) in Broadview, Illinois, United StatesFounderF.J. McKeeHeadquartersBroadview, IllinoisKey people F.L. McKee, founder Tim Helenthal, Chairman & CEO[1] Websitenationalvanlines.com National Van Lines, Inc. is a privately held American moving and relocation company based in Broadview, Illinois[2] with agents in 48 states and service partners around the world.[3] The comp...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Lappa Laona adalah tempat wisata yang terletak di Dusun Waruwue, Desa Harapan, Kecamatan Tanete Riaja, Kabupaten Barru, Sulawesi Selatan. Lappa Laona menjadi salah satu tempat wisata yang dikunjungi masyarakat untuk berlibur di akhir pekan.[1]...

American architect Karen BausmanBausman in 2018BornAllentown, Pennsylvania, U.S.NationalityAmericanAlma materThe Cooper UnionOccupationArchitectAwardsRome PrizePracticeKaren Bausman + Associates Karen Bausman (born February 8, 1958, in Allentown, Pennsylvania) is an American architect. Bausman is the Eliot Noyes Chair at the Graduate School of Design, Harvard University, and the Eero Saarinen Chair at Yale School of Architecture, Yale University, the only American woman to hold both desi...

 

University of Georgia Daniel B. Warnell School of Forestry and Natural ResourcesTypePublicEstablished1906DeanDr. Dale GreeneLocationAthens, Georgia, USAWebsitehttp://www.warnell.uga.edu/ The Daniel B. Warnell School of Forestry and Natural Resources (WSFNR) is a college within the University of Georgia (UGA) in Athens, Georgia, United States. History The college was founded in 1906 as the Department of Forestry in the College of Agriculture through an endowment from George Foster Peabody. A r...

 

United States historic placeAnsley Park Historic DistrictU.S. National Register of Historic PlacesU.S. Historic district LocationAtlanta, GeorgiaCoordinates33°47′44″N 84°22′45″W / 33.79556°N 84.37917°W / 33.79556; -84.37917Built1904ArchitectRuff, S.Z.; Reid, NeelArchitectural styleLate 19th And Early 20th Century American Movements, Late 19th And 20th Century Revivals, Queen AnneNRHP reference No.79000717 (original)15000466 (increas...

2009 city-building game 2009 video gameAnno 1404Developer(s)Related Designs Blue BytePublisher(s)UbisoftComposer(s)David Christiansen(Dynamedion)[3]SeriesAnnoPlatform(s)Microsoft WindowsReleaseEU: June 25, 2009[1]NA: June 23, 2009[2]Genre(s)City-building, business simulation, real-time strategyMode(s)Single-player, multiplayer Anno 1404, known as Dawn of Discovery in North America, is a city-building and economic simulation game with real-time strategy elements, part o...

 

У этого термина существуют и другие значения, см. Бурлаки на Волге (значения). Илья Репин Бурлаки на Волге. 1870—1873 Холст, масло. 131,5 × 281 см Государственный Русский музей, Санкт-Петербург (инв. Ж-4056)  Медиафайлы на Викискладе «Бурлаки́ на Во́лге» — картина ру...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!