Deneb rivals Rigel, a closer blue supergiant, as the most luminous first-magnitude star. However, its distance, and hence luminosity, is poorly known; its luminosity is somewhere between 55,000 and 196,000 times that of the Sun. Its Bayer designation is α Cygni, which is Latinised to Alpha Cygni, abbreviated to Alpha Cyg or α Cyg. At a distance of 802 parsecs, it is the farthest star from Earth with a magnitude higher than 2.50.
Nomenclature
α Cygni (Latinised to Alpha Cygni) is the star's designation given by Johann Bayer in 1603. The traditional name Deneb is derived from the Arabic word for "tail", from the phrase ذنب الدجاجة Dhanab al-Dajājah, or "tail of the hen".[12] The IAU Working Group on Star Names has recognised the name Deneb for this star, and it is entered in their Catalog of Star Names.[13]
Denebadigege was used in the Alfonsine Tables,[14] other variants include Deneb Adige, Denebedigege and Arided. This latter name was derived from Al Ridhādh, a name for the constellation. Johann Bayer called it Arrioph, derived from Aridf and Al Ridf, 'the hindmost' or Gallina. German poet and author Philippus Caesius termed it Os rosae, or Rosemund in German, or Uropygium – the parson's nose.[12] The names Arided and Aridif have fallen out of use.
An older traditional name is Arided/ˈærɪdɛd/, from the Arabic ar-ridf 'the one sitting behind the rider' (or just 'the follower'), perhaps referring to the other major stars of Cygnus, which were called al-fawāris 'the riders'.[15]
The spectrum of Alpha Cygni has been observed by astronomers since at least 1888, and by 1910 the variable radial velocity had become apparent. This led to the early suggestion by E. B. Frost that this is a binary star system.[20] In 1935, the work of G. F. Paddock and others had established that this star was variable in luminosity with a dominant period of 11.7 days and possibly with other, lower amplitude periods.[21] By 1954, closer examination of the star's calcium H and K lines showed a stationary core, which indicated the variable velocity was instead being caused by motion of the star's atmosphere. This variation ranged from +6 to −9 km/s around the star's mean radial velocity.[22] Other, similar supergiants were found to have variable velocities, with this star being a typical member.[21]
Deneb's adopted distance from the Earth is around 802 parsecs (2,620 ly).[7] This is based on the distance to the Cygnus OB7 association. Another distance estimate using its bolometric magnitude implied by its effective temperature and surface gravity gives 762 parsecs (2,490 ly).[b] The original derivation of a parallax using measurements from the astrometric satellite Hipparcos gave an uncertain result of 1.01 ± 0.57 mas[25][26] that was consistent with this distance. However, the 2007 re-analysis gives a much larger parallax whose distance is barely half the current accepted value. This would result in a distance of 433±60 pc, or 1,410±196 ly.[2] The controversy over whether the direct Hipparcos measurements can be ignored in favour of a wide range of indirect stellar models and interstellar distance scales is similar to the better known situation with the Pleiades.[2]
Deneb's absolute magnitude is estimated as −8.4, placing it among the visually brightest stars known, with an estimated luminosity of nearly 200,000 L☉. This is towards the upper end of values published over the past few decades.[27][28] By the distance from Hipparcos parallax, Deneb has a luminosity of 55,000 L☉.[9]
Deneb is the most luminous first magnitude star, that is, stars with a brighter apparent magnitude than 1.5. Deneb is also the most distant of the 30 brightest stars by a factor of almost 2.[29] Based on its temperature and luminosity, and also on direct measurements of its tiny angular diameter (a mere 0.002 seconds of arc), Deneb appears to have a diameter about 100 – 200 times that of the Sun;[30] if placed at the center of the Solar System, Deneb would extend to the orbit of Mercury or Earth. It is one of the largest white 'A' spectral type stars known.
Deneb is a bluish-white star of spectral type A2Ia, classifying it as a blue supergiant star[31] with a surface temperature of 8,500 kelvin. Since 1943, its spectrum has served as one of the stable references by which other stars are classified.[5] Its mass is estimated at 19 M☉. Stellar winds causes matter to be lost at an average rate of 8±3×10−7M☉ per year, 100,000 times the Sun's rate of mass loss or equivalent to about one Earth mass per 500 years.[32]
Evolutionary state
Deneb spent much of its early life as an O-type main-sequence star of about 23 M☉, but it has now exhausted the hydrogen in its core and expanded to become a supergiant.[7][33] Stars in the mass range of Deneb eventually expand to become the most luminous red supergiants, and within a few million years their cores will collapse producing a supernova explosion. It is now known that red supergiants up to a certain mass explode as the commonly seen type II-P supernovae, but more massive ones lose their outer layers to become hotter again. Depending on their initial masses and the rate of mass loss, they may explode as yellow hypergiants or luminous blue variables, or they may become Wolf-Rayet stars before exploding in a type Ib or Ic supernova. Identifying whether Deneb is currently evolving towards a red supergiant or is currently evolving bluewards again would place valuable constraints on the classes of stars that explode as red supergiants and those that explode as hotter stars.[33]
Stars evolving red-wards for the first time are most likely fusing hydrogen in a shell around a helium core that has not yet grown hot enough to start fusion to carbon and oxygen. Convection has begun dredging up fusion products but these do not reach the surface. Post-red supergiant stars are expected to show those fusion products at the surface due to stronger convection during the red supergiant phase and due to loss of the obscuring outer layers of the star. Deneb is thought to be increasing its temperature after a period as a red supergiant, although current models do not exactly reproduce the surface elements showing in its spectrum.[33] On the contrary, it is possible that Deneb has just left the main sequence and is evolving to a red supergiant phase, which is in agreement with estimates of its current mass, while its spectral composition can be explained by Deneb having been a rapidly rotating star during its main sequence phase.[7]
Variable star
Deneb is the prototype of the Alpha Cygni (α Cygni) variable stars,[35][34] whose small irregular amplitudes and rapid pulsations can cause its magnitude to vary anywhere between 1.21 and 1.29.[36] Its variable velocity discovered by Lee in 1910,[20] but it was not formally placed as a unique class of variable stars until the 1985 4th edition of the General Catalogue of Variable Stars.[37] The cause of the pulsations of Alpha Cygni variable stars are not fully understood, but their irregular nature seems to be due to beating of multiple pulsation periods. Analysis of radial velocities determined 16 different harmonic pulsation modes with periods ranging between 6.9 and 100.8 days.[38] A longer period of about 800 days probably also exists.[34]
Possible spectroscopic companion
Deneb has been reported as a possible single line spectroscopic binary with a period of about 850 days, where the spectral lines from the star suggest cyclical radial velocity changes.[38] Later investigations have found no evidence supporting the existence of a companion.[35]
Etymology and cultural significance
Names similar to Deneb have been given to at least seven different stars, most notably Deneb Kaitos, the brightest star in the constellation of Cetus; Deneb Algedi, the brightest star in Capricornus; and Denebola, the second brightest star in Leo. All these stars are referring to the tail of the animals that their respective constellations represent.
In the Chinese love story of Qi Xi, Deneb marks the magpie bridge across the Milky Way, which allows the separated lovers Niu Lang (Altair) and Zhi Nü (Vega) to be reunited on one special night of the year in late summer. In other versions of the story, Deneb is a fairy who acts as chaperone when the lovers meet.
^Calculated using an angular diameter of 2.31 milliarcseconds and the distance of 432 parsec. 0.00231 * 432 = 0.998 AU. Converting AU to R☉ by multiplying by 107.5 yields 107 R☉.
^ abcDucati, J. R. (2002). "VizieR On-Line Data Catalog: Catalogue of Stellar Photometry in Johnson's 11-color system". CDS/ADC Collection of Electronic Catalogues. 2237: 0. Bibcode:2002yCat.2237....0D.
^ abSamus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007–2013)". VizieR On-Line Data Catalog: B/GCVS. Originally Published in: 2009yCat....102025S. 1: 02025. Bibcode:2009yCat....102025S.
^Kunitzsch, Paul; Smart, Tim (2006). A Dictionary of Modern star Names: A Short Guide to 254 Star Names and Their Derivations (2nd rev. ed.). Cambridge, Massachusetts: Sky Pub. ISBN978-1-931559-44-7.
^Perryman, M. A. C.; Lindegren, L.; Kovalevsky, J.; Hoeg, E.; Bastian, U.; Bernacca, P. L.; Crézé, M.; Donati, F.; Grenon, M.; Grewing, M.; Van Leeuwen, F.; Van Der Marel, H.; Mignard, F.; Murray, C. A.; Le Poole, R. S.; Schrijver, H.; Turon, C.; Arenou, F.; Froeschlé, M.; Petersen, C. S. (1997). "The Hipparcos Catalogue". Astronomy and Astrophysics. 323: L49 –L52. Bibcode:1997A&A...323L..49P.
^Aufdenberg, J. P.; Hauschildt, P. H.; Baron, E.; Nordgren, T. E.; Burnley, A. W.; Howarth, I. D.; Gordon, K. D.; Stansberry, J. A. (2002). "The Spectral Energy Distribution and Mass-Loss Rate of the A-Type Supergiant Deneb". The Astrophysical Journal. 570 (1): 344. arXiv:astro-ph/0201218. Bibcode:2002ApJ...570..344A. doi:10.1086/339740. S2CID13260314.
^"GCVS Query forms". Sternberg Astronomical Institute. Retrieved 2019-01-07.
^Kholopov, P. N.; Samus', N. N.; Frolov, M. S.; Goranskij, V. P.; Gorynya, N. A.; Kireeva, N. N.; Kukarkina, N. P.; Kurochkin, N. E.; Medvedeva, G. I.; Perova, N. B. (1996). "VizieR Online Data Catalog: General Catalog of Variable Stars, 4th Ed. (GCVS4) (/gcvs4Kholopov+ 1988)". VizieR On-Line Data Catalog: II/139B. Originally Published in: Moscow: Nauka Publishing House (1985–1988). 2139: 0. Bibcode:1996yCat.2139....0K.