WR 140

WR 140

This image shows WR 140 and its nebula with JWST Mid-Infrared Instrument, taken in July 2022.
Observation data
Epoch J2000.0      Equinox J2000.0
Constellation Cygnus
Right ascension 20h 20m 27.97608s[1]
Declination +43° 51′ 16.2802″[1]
Apparent magnitude (V) 6.85[2]
Characteristics
Spectral type WC7pd + O5.5fc[3]
Apparent magnitude (J) 5.547[4]
Apparent magnitude (K) 5.037[5]
U−B color index −0.35[2]
B−V color index +0.40[2]
Variable type WR[6]
Astrometry
Radial velocity (Rv)3.10[7] km/s
Proper motion (μ) RA: -4.275 ±0.027 mas/yr[8]
Dec.: -1.874 ±0.026 mas/yr[8]
Parallax (π)0.5378 ± 0.0237 mas[8]
Distance1518 ± 21[9] pc
Absolute magnitude (MV)WR: −6.6 to −4.8
O: −6.11 to −5.94[10]
Orbit[9]
PrimaryO
CompanionWR
Period (P)2895.00±0.29 d
Semi-major axis (a)8.922±0.067"
(13.55±0.21 au)
Eccentricity (e)0.8993±0.0013
Inclination (i)119.07±0.88°
Longitude of the node (Ω)353.87±0.67°
Periastron epoch (T)MJD 60636.23±0.53
Argument of periastron (ω)
(secondary)
227.44±0.52°
Semi-amplitude (K1)
(primary)
26.50±0.48 km/s
Semi-amplitude (K2)
(secondary)
−75.25±0.63 km/s
Details
WR
Mass10.31 ± 0.45[9] M
Luminosity537,000[11] L
Temperature70,000[11] K
O
Mass29.27 ± 1.14[9] M
Radius35[11] R
Luminosity1,600,000[11] L
Temperature35,000[11] K
Other designations
V1687 Cygni, BD+43°3571, HD 193793, HIP 100287, TYC 3164-1678-1, SBC9 1232, WDS J20205+4351, 2MASS J20202798+4351164
Database references
SIMBADdata

WR 140 is a visually moderately bright Wolf–Rayet star placed within the spectroscopic binary star, SBC9 1232,[7] whose primary star is an evolved spectral class O4–5 star.[7] It is located in the constellation of Cygnus, lying in the sky at the centre of the triangle formed by Deneb, γ Cygni and δ Cygni.

Significance

WR 140 is thought to be a prototypical example of cosmic dust production.[12] In this mode of cosmic dust production, detritus enriched in silicon and carbon is periodically blown into the wider universe by certain stars toward the end of their lives. Such stars are termed Wolf–Rayets.

The outermost layers of a Wolf–Rayet star are enriched in oxygen, nitrogen, silicon and carbon. Indeed, the spectrographic presence of these elements, along with a notable absence of hydrogen, were one of the original diagnostic criteria for classifying a star as Wolf–Rayet. It is these enriched layers of the photosphere that are lost in repeating pulses. Once distant from the surface, the carbon fraction of this ejected material begins to glow at approximately 1000 K. The heating is due to the star's UV radiation, the wavelength of its greatest luminosity. This has the effect of rebroadcasting the star's UV radiation in the infrared, and it is this that is detected by suitable telescopes. The rebroadcast of the star's UV radiation by carbon and other metals traveling away from its surface creates the signature of a Wolf–Rayet: broad emission spectra rather than the far more common absorption spectra.

Binary system characteristics

An ultraviolet band light curve for V1687 Cygni, plotted from data published by Panov et al. (2000)[13]

WR 140 has been described as the brightest Wolf–Rayet star in the northern hemisphere, although WR 133 also in Cygnus is comparably bright.[3] Being less massive, less luminous, and probably less visually bright than its primary the Wolf–Rayet component is identified as the secondary star, despite the fact that it dominates the spectrum with its broad emission lines.[7] The primary star is an O4–5 star,[7] most likely a giant or supergiant.[10][11] Fahed et al. deduced a spectral type of O5.5fc, with a luminousity class between III and I.[3] This classification is commonly used for this star.[9][14] Its current accepted spectroscopic orbit is highly eccentric and has an orbital period of 7.9 ± 0.2 years, which has been determined from the velocity variations observed with the component's spectral lines, mostly from the Balmer absorption lines of the O4–5 primary and C IV emission lines at 465.0 nm for WR 140.[7] Separation between these two stars varies from 1.3 AU at periastron to 23.9 AU at apastron.[11]

WR 140 is listed as a Wolf–Rayet variable star, and has been given the variable star designation V1687 Cyg in the General Catalogue of Variable Stars, whose visual brightness varies only very slightly.[6] Interest with this WR 140 system is principally observing the infrared light fluctuations during the component's orbit, being extensively studied because of its episodic dust formation.[15] It is now regarded as the prototype colliding-wind binary.[10]

Shortly after periastron passage every eight years, the infrared brightness increases dramatically and then slowly drops again over a period of months.[7] Here stellar winds collide with the dust formation created by the Wolf–Rayet star, causing the unusual bulges and angles in the concentric shells of dust.[10] The dust typically emitted by Wolf–Rayet systems is not so coherent or concentric as those of WR 140. The dust lanes around Wolf–Rayets are most commonly observed as some variety of spiral. This is thought to be the result of the dueling solar winds in binary systems, which compress clouds of dust into distinct shock fronts. The concentric nature of WR 140's dust shells is not well understood, although it may be related to nuclear processes in the Wolf–Rayet star's core.

Dust shells

Model describing the dust formation around WR 140, figure published by Lau et al. 2023[16]

The dust shells were first observed in 1999/2001 with the Keck Observatory.[17] Ground-based infrared observations only resolved one to two discrete shells around the binary. Over 17 shells were observed with JWST MIRI, reaching out to about 45 arcseconds, or 70,000 astronomical units (AU). These represent more than 130 years of episodic dust production. A feature called C1, that was previously detected is bright because of the viewing geometry of these shells. The C1 feature was used to analyse the mid-infrared spectrum of the shells. These shells show emission, probably due to polycyclic aromatic hydrocarbons (PAH), which is known to be highly stable. These features indicate hydrogen-poor and carbon-rich dust particles.[14] Multi-epoch observations with Keck showed that the dust shells are accelerating under radiation pressure. Initially the grains have a speed of 1810+140
−170
 km/s
and experience an acceleration of maximal 900+700
−400
 km/s
per year, until they reach around 220 AU.[18] With the help of Subaru and Keck, the shells were detected in the mid- and near-infrared. The mid-infrared detection corresponds to colder (500 K) larger dust grains (30-50 nm) and the near-infrared detection corresponds to hotter (1000 K) nano-sized dust (1 nm). These nano-sized dust grains exist in excess and are either produced by grain-grain collision or by radiative torque disruption (RATD).[16]

Mechanism of dust production

While interactions between the two stellar winds of the stars that orbit one another in WR 140 may be responsible for concentrating dust into discrete bands, it is not known how the concentric shells are formed. It is thought that nuclear processes in the Wolf–Rayet star may contribute an unusual degree of coherence to dust emissions.[19]

As the Wolf–Rayet star in WR 140 neared the end of its short life its core ran out of hydrogen to fuse into helium. With the loss of the radiation pressure this fusion provided, the balance that determines the radii of all stars shifted decisively towards gravitational collapse. The Wolf–Rayet star began to lose volume as its own gravitational contraction compacted its cooler interior.

This collapse eventually began to slow as it grew more intense and heated the star's interior. Along the edge of the core a thin shell experienced temperatures and pressures sufficient to begin helium fusion. This helium burning provided a burst of radiation pressure that propagated through the star, up to its surface. The star began to inflate, though this increase in size was only temporary. The thin shell of helium fusion eventually caused enough expansion to moderate, or even extinguish its own reaction. The star once again began to collapse.

However, at the surface this loss of internal radiation pressure had the effect of blowing the outermost layers of the star's photosphere into space. Following this, the star began to fuse helium at a greater rate and temporarily regained its former radiation pressure. This helium fusion once again stalled, and the subsequent gravitational collapse dislodged another layer of photosphere into space. These pulses will continue as long as this cycle of intermittent helium fusion can repeat itself.

The cast-off materials are essentially extremely large injections of cosmic dust into the star's stellar wind, which then carries it away from the star at several hundred kilometers per second. It is not well understood whether the unusual concentricity of WR 140's dust is due to interactions between the two stellar winds or is the result of nuclear processes in the Wolf–Rayet member.

The immense surface temperature of Wolf–Rayet stars (up to 210,000 K) produces intense ultraviolet radiation, enough to make 20 or more layers visible to instrumentation. The distance between the concentric shells of ejected material corresponds to the time between one faltering of the star's helium burning and another. This period is close to eight years, with new emissions having been observed in 1985, 1993, 2001, and 2009.[20] One estimate places the distance between shells at around 1.4 trillion km, meaning that if the Sun were such a Wolf–Rayet star one shell would be well into the Oort Cloud and around 5% of the way to Alpha Centauri before another shell were cast off.[21] As seen in the JWST image at top right these intervals can be highly stable, continuing over many decades or hundreds of years.

References

  1. ^ a b Van Leeuwen, F. (2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. S2CID 18759600.
  2. ^ a b c Ducati, J. R. (2002). "VizieR On-Line Data Catalog: Catalogue of Stellar Photometry in Johnson's 11-color system". CDS/ADC Collection of Electronic Catalogues. 2237. Bibcode:2002yCat.2237....0D.
  3. ^ a b c Fahed, R.; Moffat, A. F. J.; Zorec, J.; Eversberg, T.; Chené, A. N.; Alves, F.; Arnold, W.; Bergmann, T.; Corcoran, M. F.; Correia Viegas, N. G.; Dougherty, S. M.; Fernando, A.; Frémat, Y.; Gouveia Carreira, L. F.; Hunger, T.; Knapen, J. H.; Leadbeater, R.; Marques Dias, F.; Martayan, C.; Morel, T.; Pittard, J. M.; Pollock, A. M. T.; Rauw, G.; Reinecke, N.; Ribeiro, J.; Romeo, N.; Sánchez-Gallego, J. R.; Dos Santos, E. M.; Schanne, L.; et al. (2011). "Spectroscopy of the archetype colliding-wind binary WR 140 during the 2009 January periastron passage". Monthly Notices of the Royal Astronomical Society. 418 (1): 2–13. Bibcode:2011MNRAS.418....2F. doi:10.1111/j.1365-2966.2011.19035.x.
  4. ^ Cutri, Roc M.; Skrutskie, Michael F.; Van Dyk, Schuyler D.; Beichman, Charles A.; Carpenter, John M.; Chester, Thomas; Cambresy, Laurent; Evans, Tracey E.; Fowler, John W.; Gizis, John E.; Howard, Elizabeth V.; Huchra, John P.; Jarrett, Thomas H.; Kopan, Eugene L.; Kirkpatrick, J. Davy; Light, Robert M.; Marsh, Kenneth A.; McCallon, Howard L.; Schneider, Stephen E.; Stiening, Rae; Sykes, Matthew J.; Weinberg, Martin D.; Wheaton, William A.; Wheelock, Sherry L.; Zacarias, N. (2003). "VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003)". CDS/ADC Collection of Electronic Catalogues. 2246: II/246. Bibcode:2003yCat.2246....0C.
  5. ^ Van Der Hucht, K. A. (2006). "New Galactic Wolf–Rayet stars, and candidates. An annex to the VIIth Catalogue of Galactic Wolf–Rayet Stars". Astronomy and Astrophysics. 458 (2): 453–459. arXiv:astro-ph/0609008. Bibcode:2006A&A...458..453V. doi:10.1051/0004-6361:20065819. S2CID 119104786.
  6. ^ a b Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+, 2007-2017)". Vizier Online Data Catalog. 1. Bibcode:2009yCat....102025S.
  7. ^ a b c d e f g Pourbaix, D.; Tokovinin, A. A.; Batten, A. H.; Fekel, F. C.; Hartkopf, W. I.; Levato, H.; Morrell, N. I.; Torres, G.; Udry, S. (2004). "SB9: The ninth catalogue of spectroscopic binary orbits". Astronomy and Astrophysics. 424 (2): 727–732. arXiv:astro-ph/0406573. Bibcode:2004A&A...424..727P. doi:10.1051/0004-6361:20041213. S2CID 119387088.
  8. ^ a b Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. (Erratum: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  9. ^ a b c d e Thomas, Joshua D.; et al. (2021). "The orbit and stellar masses of the archetype colliding-wind binary WR 140". Monthly Notices of the Royal Astronomical Society. 504 (4): 5221–5230. arXiv:2101.10563. Bibcode:2021MNRAS.504.5221T. doi:10.1093/mnras/stab1181.
  10. ^ a b c d Monnier, J. D.; Zhao, Ming; Pedretti, E.; Millan-Gabet, R.; Berger, J.-P.; Traub, W.; Schloerb, F. P.; Ten Brummelaar, T.; McAlister, H.; Ridgway, S.; Sturmann, L.; Sturmann, J.; Turner, N.; Baron, F.; Kraus, S.; Tannirkulam, A.; Williams, P. M. (2011). "First Visual Orbit for the Prototypical Colliding-wind Binary WR 140". The Astrophysical Journal Letters. 742 (1): L1. arXiv:1111.1266. Bibcode:2011ApJ...742L...1M. doi:10.1088/2041-8205/742/1/L1. S2CID 17402120.
  11. ^ a b c d e f g Williams, Peredur (2011). "Results from the 2009 campaign on WR 140". Bulletin de la Société Royale des Sciences de Liège. 80: 595. Bibcode:2011BSRSL..80..595W.
  12. ^ "WR140 Introduction". www.roe.ac.uk. Retrieved 2022-08-29.
  13. ^ Panov, Kiril P.; Altmann, Martin; Seggewiss, Wilhelm (March 2000). "Long-term photometry of the Wolf-Rayet stars WR 137, WR 140, WR 148, and WR 153". Astronomy and Astrophysics. 355: 607–616. arXiv:astro-ph/0002221. Bibcode:2000A&A...355..607P.
  14. ^ a b Lau, Ryan M.; Hankins, Matthew J.; Han, Yinuo; Argyriou, Ioannis; Corcoran, Michael F.; Eldridge, Jan J.; Endo, Izumi; Fox, Ori D.; Garcia Marin, Macarena; Gull, Theodore R.; Jones, Olivia C.; Hamaguchi, Kenji; Lamberts, Astrid; Law, David R.; Madura, Thomas (2022-11-01). "Nested dust shells around the Wolf-Rayet binary WR 140 observed with JWST". Nature Astronomy. 6 (11): 1308–1316. arXiv:2210.06452. Bibcode:2022NatAs...6.1308L. doi:10.1038/s41550-022-01812-x. ISSN 2397-3366.
  15. ^ Moffat, A. F. J.; Shara, M. M. (1986). "Photometric variability of a complete sample of northern Wolf–Rayet stars". Astronomical Journal. 92: 952. Bibcode:1986AJ.....92..952M. doi:10.1086/114227.
  16. ^ a b Lau, Ryan M.; Wang, Jason; Hankins, Matthew J.; Currie, Thayne; Deo, Vincent; Endo, Izumi; Guyon, Olivier; Han, Yinuo; Jones, Anthony P.; Jovanovic, Nemanja; Lozi, Julien; Moffat, Anthony F. J.; Onaka, Takashi; Ruane, Garreth; Sander, Andreas A. C. (2023-07-01). "From Dust to Nanodust: Resolving Circumstellar Dust from the Colliding-wind Binary Wolf-Rayet 140". The Astrophysical Journal. 951 (2): 89. arXiv:2305.14557. Bibcode:2023ApJ...951...89L. doi:10.3847/1538-4357/acd4c5. ISSN 0004-637X.
  17. ^ Monnier, J. D.; Tuthill, P. G.; Danchi, W. C. (2002-03-01). "Proper Motions of New Dust in the Colliding Wind Binary WR 140". The Astrophysical Journal. 567 (2): L137 – L140. arXiv:astro-ph/0202315. Bibcode:2002ApJ...567L.137M. doi:10.1086/340005. ISSN 0004-637X. S2CID 119363464.
  18. ^ Han, Yinuo; Tuthill, Peter G.; Lau, Ryan M.; Soulain, Anthony (2022-10-01). "Radiation-driven acceleration in the expanding WR140 dust shell". Nature. 610 (7931): 269–272. arXiv:2210.06556. Bibcode:2022Natur.610..269H. doi:10.1038/s41586-022-05155-5. ISSN 0028-0836. PMID 36224416.
  19. ^ "Episodic (and variable) dust-making WR stars". www.roe.ac.uk. Retrieved 2022-09-02.
  20. ^ Taranova, O. G.; Shenavrin, V. I. (2011-01-01). "WR 140 (=V1687 Cyg): Infrared photometry, 2001–2010". Astronomy Letters. 37 (1): 30–39. Bibcode:2011AstL...37...30T. doi:10.1134/S1063773710091014. ISSN 0320-0108. S2CID 121357413.
  21. ^ Mark McCaughrean. "Surprised no-one spotted my awful maths yet". Twitter. Retrieved 2022-09-02.

Read other articles:

川内 軽巡川内基本情報建造所 三菱造船長崎造船所運用者  大日本帝国海軍艦種 二等巡洋艦(軽巡洋艦)級名 川内型艦歴発注 1920年計画起工 1922年2月16日[1]進水 1923年10月30日[2][注釈 1]竣工 1924年4月29日[1]最期 1943年11月2日沈没除籍 1944年1月5日要目(竣工時)基準排水量 5,195英トン常備排水量 5,595英トン全長 162.15 m最大幅 14.2 m吃水 4.8 m (常備)主機

 

Finance Ministry of the Palestinian AuthorityAgency overviewJurisdictionPalestinian National AuthorityHeadquartersRamallah, PalestineMinister responsibleShoukry Bishara, Finance Minister Politics of Palestine Officeholders whose status is disputed are shown in italics Member state of the Arab League Government State of Palestine government (Ramallah) President: Mahmoud Abbasa Prime Minister: Mohammad Shtayyeh Hamas government (Gaza) National symbols Flag National anthem Coat of arms Legislati...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) حركة التغيير الآن البلد السودان  المقر الرئيسي السودان  الموقع الرسمي الموقع الرسمي  تعديل مصدري...

知的財産権 > 著作権 > 著作権法 (アメリカ合衆国) > 著作権法の歴史 (アメリカ合衆国) 連邦法初の著作権法は1790年に新聞の一面に全文が掲載された。 アメリカ合衆国著作権法の歴史では、米国著作権法の法的な変遷について解説する。 1776年のアメリカ合衆国独立宣言後には、いくつかの州が独自の著作権法を有していたものの、1790年に初めて米国連邦

 

Various types of witchcraft practices across Asia This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is missing information about a full range of Asian countries. Please expand the article to include this information. Further details may exist on the talk page. (August 2023) This article includes a list of general references, but it lacks sufficient corresponding inline citation...

 

Resolusi 711Dewan Keamanan PBBLokasi LithuaniaTanggal12 September 1991Sidang no.3.007KodeS/RES/711 (Dokumen)TopikPenambahan anggota baru PBB: LituaniaHasilDiadopsiKomposisi Dewan KeamananAnggota tetap Tiongkok Prancis Britania Raya Amerika Serikat Uni SovietAnggota tidak tetap Austria Belgia Pantai Gading Kuba Ekuador India Rumania Yaman Zaire Zimbabwe Resolusi Dewan Keamanan Perserikatan Bangsa-Bangsa 711, d...

Pour l’article ayant un titre homophone, voir Proxy (homonyme). Cet article est une ébauche concernant l’informatique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Proxy en UML En programmation, un proxy est un patron de conception. Un proxy est une classe se substituant à une autre classe. Par convention et simplicité, le proxy implémente la même interface que la classe à laquelle il se substitue[1]...

 

United Kingdom parliamentary library House of Commons LibraryUS Secretary of Defense Leon E. Panetta (right) being given a tour of the House of Commons Library in 201351°30′00″N 0°07′27″W / 51.4999°N 0.1241°W / 51.4999; -0.1241LocationLondon, EnglandEstablished1818 (1818)CollectionItems collectedBooks, journals, official papersSize350,000 itemsAccess and useAccess requirementsAccess restricted to Members of Parliament and their staffOther informationWe...

 

Hospital in Aberdeenshire, ScotlandInverurie HospitalNHS GrampianInverurie HospitalShown in AbderdeenshireGeographyLocationInverurie, Aberdeenshire, ScotlandCoordinates57°16′38″N 2°22′41″W / 57.27722°N 2.37806°W / 57.27722; -2.37806OrganisationCare systemNHS ScotlandTypeCommunityHistoryOpened1897LinksListsHospitals in Scotland Inverurie Hospital is a small hospital in Inverurie, Aberdeenshire, Scotland. It is managed by NHS Grampian. History The hospital ha...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 大川橋蔵 2代目 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2022年6月) にだいめ おおかわはしぞう二代目 大...

 

The Fruit CompanyTypePrivateIndustryConsumer GoodsFounded1942HeadquartersHood River, Oregon, USKey peopleScott Webster, CEOProductsFresh fruit, fruit baskets, gift boxes, fruit club subscriptionsNumber of employees43[1]Websitethefruitcompany.com The Fruit Company is an American company that was founded in 1942 by Roy Webster. The company, still privately owned and led by CEO Scott Webster, has become known for their classic baskets and gift towers featuring Northwest-grown pears and a...

 

War memorial in London, England Guards MemorialThe memorial in 201151°30′16″N 0°07′46″W / 51.5044°N 0.1295°W / 51.5044; -0.1295LocationLondonDesignerH. Chalton BradshawTypeWar memorialMaterialPortland stoneHeight38 feetOpening date16 October 1926Dedicated toWar dead from the Guards Division The memorial stands to the west side of Horse Guards Parade The Guards Memorial, also known as the Guards Division War Memorial,[1] is an outdoor war m...

For launches in the first half of the year, see 1963 in spaceflight (January–June), for launches in the second half, see 1963 in spaceflight (July–December) 1963 in spaceflightA North American X-15 made two suborbital flights in July and August, becoming the first reusable spacecraftOrbital launchesFirst4 JanuaryLast21 DecemberTotal70Successes50Failures17Partial failures3Catalogued55RocketsMaiden flightsAtlas LV-3A Agena-DAtlas LV-3C Centaur-BPolyot 11A59Scout X-2BScout X-3MScout X-4Thor ...

 

القوة الوطنية، (بالإنجليزية: National power)‏، تُعرَّف بأنها مجموع جميع الموارد المتاحة للأمة في السعي لتحقيق الأهداف الوطنية.[1] يُعتبر تقييم السلطة الوطنية للكيانات السياسية مسألة ذات أهمية خلال العصور الكلاسيكية القديمة، والعصور الوسطى، وعصر النهضة، وعصرنا الحالي.[2]...

 

Viral phenomenon regarding the colour of a dress This article is about the viral phenomenon. For other uses, see The Dress. The original photograph of the dress The dress was a 2015 online viral phenomenon centred on a photograph of a dress. Viewers disagreed on whether the dress was blue and black, or white and gold. The phenomenon revealed differences in human colour perception and became the subject of scientific investigations into neuroscience and vision science. The phenomenon originate...

American media company founded in 1867 Cision Ltd.Trade nameCisionTypePrivateIndustryTechnologyPredecessorCision ABVocusFounded1867; 156 years ago (1867)HeadquartersChicago, Illinois, United StatesArea servedWorldwideKey peopleCali Tran (CEO)Prasant Gondipalli (CFO)Paul Dumas (CHRO)Heather Bunyard (CIO)ProductsMarketing and public relations software & servicesServicesPublic Relations ServicesPR SoftwareMarketing ResourcesMedia Contacts DatabasePress Release DistributionN...

 

Questa voce sull'argomento calciatori trinidadiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Kevan George Nazionalità  Trinidad e Tobago Altezza 187 cm Peso 77 kg Calcio Ruolo Centrocampista Termine carriera 2021 Carriera Giovanili 2008-2011 UCF Knights Squadre di club1 2009 Central Florida Kraze2 (0)2012-2015 Columbus Crew28 (0)2014→  Dayton Dutch Lions6 (0)2016-2017&#...

 

American actress (1900–1988) Dorothy AdamsAdams in Lady Gangster (1942)Born(1900-01-08)January 8, 1900Hannah, North Dakota U.S.DiedMarch 16, 1988(1988-03-16) (aged 88)Woodland Hills, California, U.S.Resting placeInglewood Park CemeteryOccupationActressYears active1931−1975Spouse Byron Foulger ​ ​(m. 1921; died 1970)​ChildrenRachel Ames Dorothy Adams (January 8, 1900 – March 16, 1988)[1][2] was an American characte...

Defunct theme park ride Back to the Future: The RideUniversal Studios FloridaAreaExpo Center (1991–1999)World Expo (1999–2007)StatusRemovedCost$40 millionSoft opening dateMay 1, 1991Opening dateMay 2, 1991; 32 years ago (1991-05-02)Closing dateMarch 30, 2007; 16 years ago (2007-03-30)Replaced byThe Simpsons Ride (Springfield)[1] Universal Studios HollywoodAreaUpper LotStatusRemovedCost$60 millionOpening dateJune 12, 1993 (1993-06-...

 

Isla Ticonata Ubicación geográficaContinente América del SurRegión Altiplano andinoEcorregión Región PunaLago Lago TiticacaCoordenadas 15°38′55″S 69°47′16″O / -15.648611111111, -69.787777777778Ubicación administrativaPaís Perú PerúDivisión Distrito de CapachicaDepartamento PunoCaracterísticas generalesGeología Isla lacustrePunto más alto ()Mapa de localización Isla Ticonata Ubicación (Perú).[editar datos en Wikidata] Ticonata es una isla pe...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!