Blichfeldt's theorem

Blichfeldt's theorem, in the form that every plane set of area (here, an ellipse with area ) contains at least points (here, points), all of whose coordinates differ from each other by integers. The theorem is proved by cutting the set up by squares of the integer grid (top), translating each piece by an integer translation vector into a single unit square, finding a point in that unit square that is covered by many pieces (middle), and using the preimages of this point as the desired points (bottom).

Blichfeldt's theorem is a mathematical theorem in the geometry of numbers, stating that whenever a bounded set in the Euclidean plane has area , it can be translated so that it includes at least points of the integer lattice.[1] Equivalently, every bounded set of area contains a set of points whose coordinates all differ by integers.[2]

This theorem can be generalized to other lattices and to higher dimensions, and can be interpreted as a continuous version of the pigeonhole principle.[2] It is named after Danish-American mathematician Hans Frederick Blichfeldt, who published it in 1914.[3] Some sources call it Blichfeldt's principle[4] or Blichfeldt's lemma.[5]

Statement and proof

The theorem can be stated most simply for points in the Euclidean plane, and for the integer lattice in the plane. For this version of the theorem, let be any measurable set, let denote its area, and round this number up to the next integer value, . Then Blichfeldt's theorem states that can be translated so that its translated copy contains at least points with integer coordinates.[1]

The basic idea of the proof is to cut into pieces according to the squares of the integer lattice, and to translate each of those pieces by an integer amount so that it lies within the unit square having the origin as its lower right corner. This translation may cause some pieces of the unit square to be covered more than once, but if the combined area of the translated pieces is counted with multiplicity it remains unchanged, equal to . On the other hand, if the whole unit square were covered with multiplicity its area would be , less than . Therefore, some point of the unit square must be covered with multiplicity at least . A translation that takes to the origin will also take all of the points of that covered to integer points, which is what was required.[1]

More generally, the theorem applies to -dimensional sets , with -dimensional volume , and to an arbitrary -dimensional lattice (a set of points in -dimensional space that do not all lie in any lower dimensional subspace, are separated from each other by some minimum distance, and can be combined by adding or subtracting their coordinates to produce other points in the same set). Just as the integer lattice divides the plane into squares, an arbitrary lattice divides its space into fundamental regions (called parallelotopes) with the property that any one of these regions can be translated onto any other of them by adding the coordinates of a unique lattice point. If is the -dimensional volume of one of parallelotopes, then Blichfeldt's theorem states that can be translated to include at least points of . The proof is as before: cut up by parallelotopes, translate the pieces by translation vectors in onto a single parallelotope without changing the total volume (counted with multiplicity), observe that there must be a point of multiplicity at least , and use a translation that takes to the origin.[1]

Instead of asking for a translation for which there are lattice points, an equivalent form of the theorem states that itself contains a set of points, all of whose pairwise differences belong to the lattice.[2] A strengthened version of the theorem applies to compact sets, and states that they can be translated to contain at least points of the lattice. This number of points differs from only when is an integer, for which it is larger by one.[1]

Applications

Minkowski's theorem

Minkowski's theorem, proved earlier than Blichfeldt's work by Hermann Minkowski, states that any convex set in the plane that is centrally symmetric around the origin, with area greater than four (or a compact symmetric set with area equal to four) contains a nonzero integer point. More generally, for a -dimensional lattice whose fundamental parallelotopes have volume , any set centrally symmetric around the origin with volume greater than contains a nonzero lattice point.[1]

Although Minkowski's original proof was different, Blichfeldt's theorem can be used in a simple proof of Minkowski's theorem. Let be any centrally symmetric set with volume greater than (meeting the conditions of Minkowski's theorem), and scale it down by a factor of two to obtain a set of volume greater than . By Blichfeldt's theorem, has two points and whose coordinatewise difference belongs to . Reversing the shrinking operation, and belong to . By symmetry also belongs to , and by convexity the midpoint of and belongs to . But this midpoint is , a nonzero point of .[2]

Other applications

An example of the increased power of Blichfeldt's theorem over Minkowski's theorem for finding lattice points in non-convex sets. The (closed) yellow set on the left has area 1, so can be translated to cover two points of any lattice whose fundamental region has volume 1, such as the red lattice. Therefore, the blue set on the left, the set of differences of pairs of points in , when centered on the origin, contains a nonzero lattice point. In contrast, the blue rectangle on the right, the largest convex subset of , has area too small for Minkowski's theorem to guarantee that it contains a nonzero lattice point, and the yellow rectangle within it is too small for Blichfeldt's theorem to find two points in it.

Many applications of Blichfeldt's theorem, like the application to Minkowski's theorem, involve finding a nonzero lattice point in a large-enough set, but one that is not convex. For the proof of Minkowski's theorem, the key relation between the sets and that makes the proof work is that all differences of pairs of points in belong to . However, for a set that is not convex, might have pairs of points whose difference does not belong to , making it unusable in this technique. One could instead find the largest centrally symmetric convex subset , and then apply Minkowski's theorem to , or equivalently apply Blichfeldt's theorem to . However, in many cases a given non-convex set has a subset that is larger than , whose pairwise differences belong to . When this is the case, the larger size of relative to leads to tighter bounds on how big needs to be sure of containing a lattice point.[6]

For a centrally symmetric star domain, it is possible to use the calculus of variations to find the largest set whose pairwise differences belong to . Applications of this method include simultaneous Diophantine approximation, the problem of approximating a given set of irrational numbers by rational numbers that all have the same denominators.[6]

Generalizations

Analogues of Blichfeldt's theorem have been proven for other sets of points than lattices, showing that large enough regions contain many points from these sets. These include a theorem for Fuchsian groups, lattice-like subsets of matrices,[7] and for the sets of vertices of Archimedean tilings.[8][9]

Other generalizations allow the set to be a measurable function, proving that its sum over some set of translated lattice points is at least as large as its integral, or replace the single set with a family of sets.[10]

Computational complexity

A computational problem related to Blichfeldt's theorem has been shown to be complete for the PPP complexity class, and therefore unlikely to be solvable in polynomial time. The problem takes as input a set of integer vectors forming the basis of a -dimensional lattice , and a set of integer vectors, represented implicitly by a Boolean circuit for testing whether a given vector belongs to . It is required that the cardinality of , divided by the volume of the fundamental parallelotope of , is at least one, from which a discrete version of Blichfeldt's theorem implies that includes a pair of points whose difference belongs to . The task is to find either such a pair, or a point of that itself belongs to . The computational hardness of this task motivates the construction of a candidate for a collision-resistant cryptographic hash function.[11]

See also

  • Dot planimeter, a device for estimating the area of a shape by counting the lattice points that it contains
  • Pick's theorem, a more precise relationship between area and lattice points covered by a polygon with lattice-point vertices

References

  1. ^ a b c d e f Olds, C. D.; Lax, Anneli; Davidoff, Giuliana P. (2000), "Chapter 9: A new principle in the geometry of numbers", The Geometry of Numbers, Anneli Lax New Mathematical Library, vol. 41, Mathematical Association of America, Washington, DC, pp. 119–127, ISBN 0-88385-643-3, MR 1817689
  2. ^ a b c d Cassels, J. W. S. (1978), "Theorem 2.1 (Blichfeldt)", Rational quadratic forms, London Mathematical Society Monographs, vol. 13, Academic Press, p. 68, ISBN 0-12-163260-1, MR 0522835
  3. ^ Blichfeldt, H. F. (1914), "A new principle in the geometry of numbers, with some applications", Transactions of the American Mathematical Society, 15 (3): 227–235, doi:10.1090/S0002-9947-1914-1500976-6, JSTOR 1988585, MR 1500976
  4. ^ Marvin, Stephen (November 2012), "B", Dictionary of Scientific Principles, John Wiley & Sons, pp. 19–36, doi:10.1002/9781118582121.ch2
  5. ^ Honsberger, Ross (1973), "The orchard problem", Mathematical Gems I, Dolciani Mathematical Expositions, vol. 1, Mathematical Association of America, pp. 43–53; see in particular Blichfeldt's lemma, p. 44
  6. ^ a b Spohn, W. G. (1968), "Blichfeldt's theorem and simultaneous Diophantine approximation", American Journal of Mathematics, 90: 885–894, doi:10.2307/2373489, JSTOR 2373489, MR 0231794
  7. ^ Tsuji, Masatsugu (1956), "Analogue of Blichfeldt's theorem for Fuchsian groups", Commentarii Mathematici Universitatis Sancti Pauli, 5: 17–24, MR 0081323
  8. ^ Cao, Penghao; Yuan, Liping (2011), "A Blichfeldt-type theorem for -points", American Mathematical Monthly, 118 (8): 743–746, doi:10.4169/amer.math.monthly.118.08.743, MR 2843996
  9. ^ Schymura, Matthias; Yuan, Liping (2019), "A note on discrete lattice-periodic sets with an application to Archimedean tilings", Beiträge zur Algebra und Geometrie, 60 (4): 749–759, arXiv:1710.02552, doi:10.1007/s13366-019-00446-x, MR 4025474
  10. ^ Lekkerkerker, C. G. (1969), "Section 2.6: Generalizations of the theorem of Blichfeldt", Geometry of Numbers, Bibliotheca Mathematica, vol. 8, North-Holland, pp. 40–43, MR 0271032
  11. ^ Sotiraki, Katerina; Zampetakis, Manolis; Zirdelis, Giorgos (2018), "PPP-completeness with connections to cryptography", in Thorup, Mikkel (ed.), 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, IEEE Computer Society, pp. 148–158, arXiv:1808.06407, doi:10.1109/FOCS.2018.00023, MR 3899585

Read other articles:

Argentine footballer Mario Evaristo Evaristo in 1931Personal informationFull name Marino EvaristoDate of birth 10 December 1908Place of birth Buenos Aires, ArgentinaDate of death 30 April 1993 (age 84)Place of death Quilmes, ArgentinaHeight 1.69 m (5 ft 6+1⁄2 in)Position(s) Outside leftSenior career*Years Team Apps (Gls)0000–1926 Sportivo Palermo 1926–1931 Boca Juniors 110 (31)1932 Sportivo Barracas 1932–1933 Independiente 13 (2)1935–1936 Genoa 1936–1938 Antibes...

 

علم جمهورية الكونغو   التسمية علم جمهورية الكونغو (بالفرنسية: Drapeau de la République du Congo)‏ ألوان أخضر أصفر أحمر  الاعتماد 15 سبتمبر 1959  الاختصاص جمهورية الكونغو  التصميم ثلاثة ألوان قطرية من الأخضر والأصفر والأحمر تشع من الزاوية الجانبية السفلية للرافعة علم جمهورية الكون

 

Chapelle de la CongrégationPrésentationDestination initiale CulteConstruction XVIe sièclePropriétaire CommunePatrimonialité  Inscrit MH (1930)LocalisationPays FranceRégion BretagneDépartement MorbihanCommune LocminéAdresse Place du Champ-de-FoireCoordonnées 47° 53′ 16″ N, 2° 50′ 08″ OLocalisation sur la carte de FranceLocalisation sur la carte de BretagneLocalisation sur la carte du Morbihanmodifier - modifier le code - modifier Wikid...

Dupont de l'Eure Jacques-Charles Dupont de l'EureDupont de l'Eure Primeiro-ministro da França Período 24 de fevereiro até 9 de maio de 1848 Antecessor(a) Adolphe Thiers Sucessor(a) Jean Arago Dados pessoais Nascimento 27 de fevereiro de 1767 Eure Morte 1855 (88 anos) Jacques-Charles Dupont de l'Eure (Eure, 27 de fevereiro de 1767 — 1855)[1] foi um político francês.[2] Ocupou o cargo de primeiro-ministro da França, de 24 de fevereiro a 9 de maio de 1848.[2] Ele é mais co...

 

Обґрунтування добропорядного використання не вказано назву статті [?] Опис Ріо (мультфільм) Постер фільму «Ріо» Джерело hurtom.com Автор невідомо Час створення ймовірно 2011 рік Мета використання Замінність Обсяг використаного матеріалу Низька роздільність? Добропорядне

 

جيمس باول كلارك (بالإنجليزية: James Paul Clarke)‏    معلومات شخصية الميلاد 18 أغسطس 1854  يازو سيتي  الوفاة 1 أكتوبر 1916 (62 سنة)   ليتل روك، أركنساس  مواطنة الولايات المتحدة  مناصب حاكم أركنساس (18 )   في المنصب8 يناير 1895  – 12 يناير 1897  ويليام ميد فيشباك  دانيال ...

Perangko peringatan 100 tahun Kartini. Kumpulan surat-suratnya yang berjudul Habis Gelap Terbitlah Terang diterjemahkan 100 tahun lalu pada tahun 1922 oleh Armijn Pane. Bagian dari seri tentangBudaya Indonesia Sejarah Sejarah menurut provinsi Bangsa Daftar suku bangsa Daftar suku bangsa menurut provinsi Bahasa Bahasa Indonesia Tradisi Etiket di Indonesia Busana nasional Indonesia Mitologi dan cerita rakyat Mitologi Cerita rakyat Hidangan Hari raya Festival Hari libur nasional Agama Islam Kekr...

 

Die Elternhauserziehung in Deutschland ist heute von einer Vielzahl sich oft stark widersprechender Erziehungskonzepte und Erziehungsstile geprägt. Inhaltsverzeichnis 1 Geschichte 1.1 Erste Welle der Reformpädagogik 1.2 Zeit des Nationalsozialismus 1.3 Zweite Welle der Reformpädagogik 1.4 Deutsche Demokratische Republik 2 Rahmenbedingungen und Statistik 2.1 Rechtliche Regelungen 2.2 Elternhaussituation 2.3 Elternerwerbstätigkeit 2.4 Kindertagesbetreuung 3 Zeittypische Probleme 3.1 Unzurei...

 

Grodków, St. Michael (2013) Innenraum Die Kirche St. Michael (poln. Kościół św. Michała Archanioła) ist eine römisch-katholische Kirche in der schlesischen Stadt Grodków (deutsch Grottkau). Das Gotteshaus steht in der westlichen Altstadt an der ul. Warszawska (bis 1945 Münsterbergerstraße). Die Kirche ist die Hauptkirche der Pfarrei St. Michael (Parafia św. Michała Archanioła) sowie die Stadtkirche von Grodków. Inhaltsverzeichnis 1 Geschichte 2 Architektur 3 Literatur 4 We...

Храм Поля Пастушків лат. Gloria in Excelsis Deo Координати: 31°42′32″ пн. ш. 35°13′38″ сх. д. / 31.70889° пн. ш. 35.22722° сх. д. / 31.70889; 35.22722Тип споруди каплицяРозташування  Палестина,  Бейт-Сахур Кустодія Святої ЗемліАрхітектор Антоніо БарлуцціПочаток буді...

 

Indian screenwriter, actor, and filmmaker For the Indian-Canadian novelist, see Anand Mahadevan. Anant MahadevanMahadevan in 2019BornAnanth Narayan Mahadevan (1956-08-28) 28 August 1956 (age 67)Thrissur, Travancore-Cochin, IndiaNationalityIndianOccupationsFilm directorWriterActorYears active1984–present Ananth Narayan Mahadevan (born 28 August 1956), also credited as Anant Mahadevan,[1][2] is an Indian screenwriter, actor, and film director of Hindi and Marathi as ...

 

Species of fish Garra mcclellandi Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Cypriniformes Family: Cyprinidae Subfamily: Labeoninae Genus: Garra Species: G. mcclellandi Binomial name Garra mcclellandi(Jerdon, 1849)[2] Synonyms Gonorhynchus mclellandi Jerdon, 1849 Discognathus elegans Annandale, 1919 Garra mcclellandi (Cauvery garra) is a species of cyprini...

Municipality in Catalonia, SpainLa JonqueraMunicipalityPanorama of the Requesens Castle FlagCoat of armsLa JonqueraLocation in CataloniaShow map of Province of GironaLa JonqueraLa Jonquera (Spain)Show map of SpainCoordinates: 42°25′11″N 2°52′31″E / 42.41972°N 2.87528°E / 42.41972; 2.87528Country SpainCommunity CataloniaProvince GironaComarca Alt EmpordàGovernment • MayorSònia Martínez Juli (2015)[1]Area[2] •&#...

 

British businesswoman Ruzwana BashirBorn (1983-07-28) 28 July 1983 (age 40)Skipton, North Yorkshire, EnglandNationalityBritishEducationSkipton Girls' High SchoolAlma mater University of Oxford Harvard Business School (MBA) OccupationEntrepreneur Ruzwana Bashir (born 28 July 1983) is a British entrepreneur, founder and CEO of Peek, a travel company based in San Francisco, California. She was selected in 2012 for Forbes 30 Under 30 list on Technology[1] and in 2014 for Fast Co...

 

فالنسيا دي لاس توريس (بالإسبانية: Valencia de las Torres)‏[1]   - بلدية -    تقسيم إداري البلد إسبانيا  [2] المقاطعة بطليوس خصائص جغرافية إحداثيات 38°24′13″N 6°00′10″W / 38.4034797°N 6.0028749°W / 38.4034797; -6.0028749[3]  [4] المساحة 210 كيلومتر مربع  الارتفاع 520 ...

Richard Wagner Wilhelm Richard Wagner (22 Mei 1813 – 13 Februari 1883) adalah seorang komponis musik romantik berpengaruh Jerman, pakar teori musik, dan penulis, namun paling terkenal melalui karya operanya. Musiknya masih sering dimainkan, yang paling terkenal adalah Ride of the Valkyries dari Die Walküre dan Bridal Chorus dari Lohengrin. Wagner juga merupakan seorang tokoh yang sangat kontroversial, karena inovasi musik dan inovasi dramanya dan juga karena dia adalah seoran...

 

United States historic placeThackeray HallU.S. Historic districtContributing property Thackeray Hall at the University of PittsburghCoordinates40°26′39.54″N 79°57′26.15″W / 40.4443167°N 79.9572639°W / 40.4443167; -79.9572639AreaSchenley Farms Historic DistrictBuilt1923-1925ArchitectAbram Garfield, Cleveland (son of U. S. President James Abram Garfield)Architectural styleEarly ClassicalPart ofSchenley Farms Historic District (ID83002213[1])Added...

 

British materials scientist, engineer, broadcaster and writer Mark MiodownikMBE FREngMiodownik speaking at the Science is Vital rally in 2010BornMark Andrew Miodownik (1969-04-25) 25 April 1969 (age 54)[2]London, EnglandNationalityBritishEducationEmanuel SchoolAlma materUniversity of Oxford (BA, DPhil)[2]Known forBroadcastingAwardsHetherington Prize (1995) Morgan-Botti lecture (2013)Royal Institution Christmas Lectures (2014)[1]AAAS Public Engagement...

Site of Special Scientific Interest in Kent, England Hoad's WoodSite of Special Scientific InterestLocationKentGrid referenceTQ 952 425[1]InterestBiologicalArea80.5 hectares (199 acres)[1]Notification1989[1]Location mapMagic Map Hoad's Wood is an 80.5-hectare (199-acre) biological Site of Special Scientific Interest west of Ashford in Kent.[1][2] Natural England described the woodland thus: This site is a good example of a pedunculate oak-hornbeam woodl...

 

Atomic bomb dropped on Hiroshima This article is about the type of atomic bomb that was dropped on Hiroshima. For other uses, see Little Boy (disambiguation). Little Boy A post-war Little Boy modelTypeNuclear weaponPlace of originUnited StatesProduction historyDesignerLos Alamos LaboratoryManufacturerNaval Gun Factory,Washington, D.C.Naval Ordnance Plant,Center Line, MichiganExpert Tool and Die Company,Detroit, MichiganProduced1945–1947No. built1 wartime + 5 postwarSpecificat...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!