Bauhinia blakeana bunga di bendera wilayah Hong Kong memiliki simetri C 5 ; bintang di setiap kelopak memiliki simetri D 5 .
Yin dan Yang simbol memiliki geometri simetri C 2 dengan warna terbalik
Dalam geometri, grup titik adalah grup geometris simetri (isometri) yang menjaga setidaknya satu titik tetap. Kelompok titik dapat ada dalam ruang Euklides dengan dimensi apa pun, dan setiap kelompok titik dalam dimensi d adalah subkelompok dari grup ortogonal O(d). Kelompok titik dapat direalisasikan sebagai himpunan matriks ortogonal M yang mengubah titik x menjadi titik y :
y = Mx
dimana asal adalah titik tetap. Elemen kelompok titik dapat berupa rotasi (determinan dari M = 1) atau yang lain refleksi, atau rotasi tidak tepat (determinan dari M = −1).
Kelompok titik dapat diklasifikasikan ke dalam kelompok kiral (atau rotasi murni) dan kelompok akiral .[1]
Gugus kiral adalah subgrup dari grup ortogonal khusus SO( d ): grup ini hanya berisi transformasi ortogonal yang mempertahankan orientasi, yaitu, determinan +1. Gugus akiral juga mengandung transformasi determinan −1. Dalam gugus akiral, transformasi yang mempertahankan orientasi membentuk subgrup (kiral) dari indeks 2.
Grup Coxeter Hingga atau kelompok refleksi adalah kelompok titik yang dihasilkan murni oleh sekumpulan cermin pantul yang melewati titik yang sama. Grup peringkat n Coxeter memiliki mirror n dan diwakili oleh diagram Coxeter-Dynkin. Notasi Coxeter menawarkan notasi tanda kurung yang setara dengan diagram Coxeter, dengan simbol markup untuk rotasi dan grup titik subsimetri lainnya. Kelompok refleksi harus akiral (kecuali untuk grup trivial yang hanya mengandung elemen identitas).
Daftar grup titik
Artikel ini sedang dalam perbaikan. CATATAN: Bagian ini terdapat masalah dan belum diterjemahkan. Untuk menghindari konflik penyuntingan, mohon jangan melakukan penyuntingan selama pesan ini ditampilkan. Halaman ini terakhir disunting oleh InternetArchiveBot (Kontrib • Log) 512 hari 1263 menit lalu.
Satu dimensi
Hanya ada dua grup titik satu dimensi, yaitu grup identitas dan kelompok refleksi.
Siklik: n - rotasi lipat. Grup abstrak Z n , grup bilangan bulat di bawah penambahan modulo n .
Dn
nm
*n•
[n]
2n
Dihedral: siklik dengan refleksi. Grup abstrak Dihn, grup dihedral.
Himpunan bagian dari grup titik pantulan murni, yang ditentukan oleh 1 atau 2 mirror, juga dapat diberikan oleh grup Coxeter dan poligon terkait. Ini termasuk 5 kelompok kristalografi. Simetri kelompok pantulan dapat digandakan dengan isomorphism, memetakan kedua cermin satu sama lain dengan cermin membagi dua, menggandakan simetri.
Mereka datang dalam 7 kelompok tak terbatas dari kelompok aksial atau prismatik, dan 7 kelompok polihedral atau Platonis tambahan. Dalam Notasi Schönflies, *
(*) Ketika entri Intl digandakan, yang pertama untuk genap n , yang kedua untuk ganjil n .
Grup refleksi
Kelompok titik refleksi, ditentukan oleh 1 sampai 3 bidang cermin, juga dapat diberikan oleh grup Coxeter dan polihedra terkait. Grup [3,3] dapat digandakan, ditulis sebagai [[ 3,3]], memetakan cermin pertama dan terakhir satu sama lain, menggandakan simetri menjadi 48, dan isomorfik ke grup [4,3].
The four-dimensional point groups (chiral as well as achiral) are listed in Conway and Smith,[1] Section 4, Tables 4.1-4.3.
The following list gives the four-dimensional reflection groups (excluding those that leave a subspace fixed and that are therefore lower-dimensional reflection groups). Each group is specified as a Coxeter group, and like the polyhedral groups of 3D, it can be named by its related convex regular 4-polytope. Related pure rotational groups exist for each with half the order, and can be represented by the bracket Coxeter notation with a '+' exponent, for example [3,3,3]+ has three 3-fold gyration points and symmetry order 60. Front-back symmetric groups like [3,3,3] and [3,4,3] can be doubled, shown as double brackets in Coxeter's notation, for example [[3,3,3]] with its order doubled to 240.
The following table gives the five-dimensional reflection groups (excluding those that are lower-dimensional reflection groups), by listing them as Coxeter groups. Related chiral groups exist for each with half the order, and can be represented by the bracket Coxeter notation with a '+' exponent, for example [3,3,3,3]+ has four 3-fold gyration points and symmetry order 360.
The following table gives the six-dimensional reflection groups (excluding those that are lower-dimensional reflection groups), by listing them as Coxeter groups. Related pure rotational groups exist for each with half the order, and can be represented by the bracket Coxeter notation with a '+' exponent, for example [3,3,3,3,3]+ has five 3-fold gyration points and symmetry order 2520.
The following table gives the seven-dimensional reflection groups (excluding those that are lower-dimensional reflection groups), by listing them as Coxeter groups. Related chiral groups exist for each with half the order, defined by an even number of reflections, and can be represented by the bracket Coxeter notation with a '+' exponent, for example [3,3,3,3,3,3]+ has six 3-fold gyration points and symmetry order 20160.
The following table gives the eight-dimensional reflection groups (excluding those that are lower-dimensional reflection groups), by listing them as Coxeter groups. Related chiral groups exist for each with half the order, defined by an even number of reflections, and can be represented by the bracket Coxeter notation with a '+' exponent, for example [3,3,3,3,3,3,3]+ has seven 3-fold gyration points and symmetry order 181440.
^Grup Ruang Kristalografi dalam aljabar geometris, D. Hestenes and J. Holt, Journal of Mathematical Physics. 48, 023514 (2007) (22 pages) PDF[1]Diarsipkan 2020-10-20 di Wayback Machine.
Seat of the Archdiocese of Chicago in Illinois, US Church in Illinois, United StatesHoly Name CathedralView from State StreetLocation730 North Wabash AvenueChicago, IllinoisCountryUnited StatesDenominationRoman CatholicWebsiteholynamecathedral.orgHistoryStatusCathedralFounded1843 (parish)DedicatedNovember 21, 1875 by Bishop Thomas FoleyArchitectureFunctional statusActiveHeritage designationNRHPDesignated2000Architect(s)Patrick Keely et al.StyleGothic RevivalGroundbreakingJuly 19, 1874Administ...
IndiaAssociationIndian Volleyball AssociationConfederationAVCUniforms Home FIVB U21 World ChampionshipAppearances8 (First in 1981)Best result4th (2009)AVC U20 Asian ChampionshipAppearances19 (First in 1980)Best result Runners-up (1994, 2022) The India men's national under-21 volleyball team represents India in men's under-21 volleyball events, it is controlled and managed by the India Volleyball Association that is a member of Asian volleyball body Asian Volleyball Confederation (AVC) and the...
Caryocar Caryocar nuciferumTaxonomíaReino: PlantaeDivisión: MagnoliophytaClase: MagnoliopsidaOrden: MalpighialesFamilia: CaryocaraceaeGénero: CaryocarF.Allam. ex L.Especies Ver texto Sinonimia Pekea Aubl. (1775). Souari Aubl. (1775). Rhizobolus Gaertn. ex Schreb. (1789). Barollaea Neck. (1790), opus utique oppr. Acantacaryx Arruda ex Koster (1816), nom. inval. Acanthocarya Arruda ex Endl. (1840).[1] [editar datos en Wikidata] Caryocar es un género de plantas con fl...
Football league seasonPrimera División ASeason2008–09ChampionsApertura: Querétaro Clausura: MéridaPromotedQuerétaroRelegatedTapachula← 2007–08 2009–10 → The format for the 2008–09 season changed from 2 groups of 12 to 3 groups of 9 teams. This gave the opportunity and the number increased from 24 to 27, many teams served as reserve teams from teams in D1. Changes for the 2008–09 season Coatzacoalcos moved to Orizaba and was rebranded Orizaba after Apertura 2008 Veracruz were...
One thousand Dollars(Hong Kong)Value1000 Hong Kong dollarsWidth163 or 165 mmHeight81.5 or 82 mmSecurity featuresWindow, Watermark, Security thread, Registration device, Latent image, Optically Variable Ink, Iridescent imageMaterial usedCottonYears of printing1860s, 1977-present (various years depending on banks) The one thousand-dollar note is the highest-valued banknote in circulation in Hong Kong. Currently, this note is issued by the Hongkong and Shanghai Banking Corporation (HSB...
1959 film Alli Petra PillaiTheatrical release posterDirected byK. SomuScreenplay byA. P. Nagarajan (dialogues)Based onTonga-waliProduced byA. MaruthakasiK. V. MahadevanViolin MahadevanV. K. MuthuramalingamStarringS. V. SahasranamamPandari BaiV. K. RamasamyCinematographyV. K. Gopanna[1]Edited byT. V. Jayarangan[1]Music byK. V. MahadevanProductioncompanyM. M. ProductionsRelease date 31 July 1959 (1959-07-31) CountryIndiaLanguageTamil Alli Petra Pillai (transl.R...
Rural district in Kermanshah province, Iran For the city, see Gowdin. Rural District in Kermanshah, IranGowdin Rural District Persian: دهستان گودينRural DistrictGowdin Rural DistrictCoordinates: 34°30′22″N 48°02′01″E / 34.50611°N 48.03361°E / 34.50611; 48.03361[1]Country IranProvinceKermanshahCountyKangavarDistrictCentralPopulation (2016)[2] • Total8,379Time zoneUTC+3:30 (IRST) Gowdin Rural District...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2023. Pound PuppiesBerkas:Puppieslogo.PNGNama alternatifAll New Pound PuppiesGenre Komedi Petualangan Sutradara Don Lusk Art Davis (Musim 1) Carl Urbano (Musim 1) Rudy Zamora (Musim 1) Bob Goe (Musim 2) John Kimball (Musim 2) Jay Sarbry (Musim 2) Paul Somme...
This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: PUSH university guide – news · newspapers · books · scholar · JSTOR (May 2010) (Learn how and when to remove this template message) Push is a British media organisation that offers information to university applicants and students in the United Kingdom. Its flagship is now the website Push.co.uk, whic...
Polish tennis player (born 1997) Magdalena FręchFręch at the 2023 US OpenCountry (sports) PolandBorn (1997-12-15) 15 December 1997 (age 25)Łódź, PolandHeight1.71 m (5 ft 7 in)PlaysRight-handed (two-handed backhand)CoachAndrzej KobierskiPrize money$1,819,213SinglesCareer record371–255 (59.3%)Career titles1 WTA Challenger, 5 ITFHighest rankingNo. 63 (6 November 2023)Current rankingNo. 63 (6 November 2023)Grand Slam singles resultsAustrali...
South Korean actress In this Korean name, the family name is Kim. Kim So-jinKim in 2018Born (1979-12-12) December 12, 1979 (age 43)Inje County, South KoreaEducationChung-Ang University - Department of TheaterKorea National University of Arts - M.A in Fine ArtsOccupationActressYears active2006–presentAgentAndmarq[1]Korean nameHangul김소진Hanja金素辰Revised RomanizationGim SojinMcCune–ReischauerKim Sochin Kim So-jin (Korean: 김소진; Hanja: ...
American Civil War Medal of Honor recipient For the lawyer from Virginia, relative and biographer of Patrick Henry, see William Wirt Henry. William Wirt HenryBellows Falls Times, October 2, 1897Born(1831-11-21)November 21, 1831Waterbury, VermontDiedAugust 31, 1915(1915-08-31) (aged 83)Burlington, VermontPlace of burialLakeview Cemetery,Burlington, VermontAllegianceUnited StatesUnionService/branchUnited States ArmyUnion ArmyYears of service1861, 1862 - 1865Rank Colonel Brevet Brigadi...
Brunnsparken seen from the west. Brunnsparken (Swedish for well park) is a central square in Gothenburg, Sweden. It is located between Nordstan and Arkaden, and between two of Gothenburg's oldest streets, Norra Hamngatan and Södra Hamngatan (actually bordering Stora Hamnkanalen to the north). With its central location Inom Vallgraven and with numerous shopping centres it is a popular meeting place in Gothenburg. Traffic hub Brunnsparken has frequent bus and tram traffic. Brunnsparken is domi...
Persindra IndramayuNama lengkapPersatuan Sepakbola IndramayuJulukanLaskar WiralodraBerdiri8 Oktober 1966; 57 tahun lalu (1966-10-08)StadionStadion Tridaya Indramayu, Indonesia(Kapasitas: 15.000)PemilikPSSI Kabupaten IndramayuManajerKusnaediPelatihRici VauziLigaLiga 32022Juara (Liga 3 Jawa Barat Seri 2)Kelompok suporterPersindra Fans, Pandawa Kostum kandang Kostum tandang Persindra Indramayu (atau singkatan dari Persatuan Sepakbola Indramayu) adalah tim sepak bola Indonesia yang bermarkas...
FATA Universityفاٹا یونیورسٹیفاټا پوهنتونTypePublicEstablished2016ChancellorGovernor of Khyber PakhtunkhwaVice-ChancellorProf. Dr. Muhammad Jahanzeb Khan [1]LocationAkhorwal, Tribal Sub-Division Darra Adam Khel, Kohat, Khyber Pakhtunkhwa, PakistanWebsitewww.fu.edu.pk FATA University (Urdu: فاٹا یونیورسٹی; Pashto: فاټا پوهنتون) is a public sector university situated in Akhorwal, Tribal Sub-Division Darra Adam Khel, Kohat, Khyber Pakhtunkh...
Rode Brigades Oprichting 1970 Actief in Italië Ideologie marxisme-leninisme Methoden Ontvoering, moord De Rode Brigades (Italiaans: Brigate Rosse) was een Italiaanse communistische terroristische organisatie die in 1970 door enkele studenten opgericht werd. De aankondiging van deze organisatie werd gemeld in de uitgave van 'Proletarisch links' van 20 oktober 1970. Deze organisatie opereerde vanuit verschillende Italiaanse steden. Terreuracties Aldo Moro tijdens zijn ontvoering. In 1978...
La Estancia de Nanchititla Osnovni podaci Država Meksiko Savezna država México Opština Luvianos Stanovništvo Stanovništvo (2013.) 237[1] Geografija Koordinate 18°55′17″N 100°27′33″W / 18.92125°N 100.45911°W / 18.92125; -100.45911 Vremenska zona UTC-6, leti UTC-5 Nadmorska visina 1132[1] m La Estancia de NanchititlaLa Estancia de Nanchititla na karti Meksika La Estancia de Nanchititla je naselje u Meksiku, u saveznoj državi Méx...
Schéma d'un calorimètre utilisé à l'institut de la nouvelle énergie à base d'hydrogène au Japon. « Fusion froide » est une expression médiatique qui désigne des réactions supposées nucléaires à température et pression ambiantes. La plus connue est celle qui semble être une fusion nucléaire réalisée selon des techniques dérivées d'une expérience réalisée par Martin Fleischmann et Stanley Pons en mars 1989. Cette expérience se caractérisait par un dégagemen...