在微分几何中,曲率半径R是曲率的倒数。 对于曲线上一点,曲率半径等于最贴近该点曲线的圆弧半径。 对于曲面上一点,曲率半径是最贴合该点的法向截面或其组合的圆弧半径。 [1] [2] [3]
对于空间曲线,曲率半径是曲率矢量的长度。
对于平面曲线,则曲率半径是曲线上固定一点的弧长的微分与切角的微分之比[3]的绝对值
R = | d s d φ | = 1 κ {\displaystyle R=\left\vert {ds \over d\varphi }\right\vert ={1 \over \kappa }}
而κ是曲率。
若曲线在笛卡尔坐标中为y(x) 作为函数图,则其曲率半径为(假设曲线可进行二阶微分)
R = | ( 1 + y ′ 2 ) 3 2 y ″ | , {\displaystyle R=\left|{\frac {\left(1+y'^{\,2}\right)^{\frac {3}{2}}}{y''}}\right|\,,}
其中 y ′ = d y d x , {\textstyle y'={\frac {dy}{dx}}\,,} y ″ = d 2 y d x 2 , {\textstyle y''={\frac {d^{2}y}{dx^{2}}},} |z|为z的绝对值。
如果曲线是关于函数x(t)和y(t)的参数方程,则其曲率半径为
R = | d s d φ | = | ( x ˙ 2 + y ˙ 2 ) 3 2 x ˙ y ¨ − y ˙ x ¨ | {\displaystyle R=\left|{\frac {ds}{d\varphi }}\right|=\left|{\frac {\left({{\dot {x}}^{2}+{\dot {y}}^{2}}\right)^{\frac {3}{2}}}{{\dot {x}}{\ddot {y}}-{\dot {y}}{\ddot {x}}}}\right|}
其中 x ˙ = d x d t , {\textstyle {\dot {x}}={\frac {dx}{dt}},} x ¨ = d 2 x d t 2 , {\textstyle {\ddot {x}}={\frac {d^{2}x}{dt^{2}}},} y ˙ = d y d t , {\textstyle {\dot {y}}={\frac {dy}{dt}},} y ¨ = d 2 y d t 2 . {\textstyle {\ddot {y}}={\frac {d^{2}y}{dt^{2}}}.}
由此启发,该结果可以表示为[2]
R = | v | 3 | v × v ˙ | , {\displaystyle R={\frac {\left|\mathbf {v} \right|^{3}}{\left|\mathbf {v} \times \mathbf {\dot {v}} \right|}}\,,}
其中
| v | = | ( x ˙ , y ˙ ) | = R d φ d t . {\displaystyle \left|\mathbf {v} \right|={\big |}({\dot {x}},{\dot {y}}){\big |}=R{\frac {d\varphi }{dt}}\,.}
若γ : ℝ → ℝn是ℝn中的参数方程曲线,则曲线上每个点的曲率半径ρ : ℝ → ℝ ,由[3]此可知
ρ = | γ ′ | 3 | γ ′ | 2 | γ ″ | 2 − ( γ ′ ⋅ γ ″ ) 2 . {\displaystyle \rho ={\frac {\left|{\boldsymbol {\gamma }}'\right|^{3}}{\sqrt {\left|{\boldsymbol {\gamma }}'\right|^{2}\,\left|{\boldsymbol {\gamma }}''\right|^{2}-\left({\boldsymbol {\gamma }}'\cdot {\boldsymbol {\gamma }}''\right)^{2}}}}\,.}
特殊情况下,若f(t)是从ℝ映射到ℝ的函数,则其图象的曲率半径γ(t) = (t, f (t))为
ρ ( t ) = | 1 + f ′ 2 ( t ) | 3 2 | f ″ ( t ) | . {\displaystyle \rho (t)={\frac {\left|1+f'^{\,2}(t)\right|^{\frac {3}{2}}}{\left|f''(t)\right|}}.}
令γ如上,并固定t 。我们想要找到一个与t处的γ零阶、一阶和二阶导数相匹配的参数方程圆的半径ρ 。显然,半径与位置γ(t) 无关,而与速度γ′(t)和加速度γ″(t) 有关。 由向量v和w只能获得三个独立标量,即v · v 、 v · w和w · w 。因此,曲率半径一定是关于这三个标量函数。即 |γ′(t)|2, |γ″(t)|2,γ′(t) · γ″(t) 。 [3]
ℝn中圆的一般参数方程为
g ( u ) = a cos ( h ( u ) ) + b sin ( h ( u ) ) + c {\displaystyle \mathbf {g} (u)=\mathbf {a} \cos(h(u))+\mathbf {b} \sin(h(u))+\mathbf {c} }
其中c ∈ ℝn是圆心(无关,因为它在求导过程中消失), a,b ∈ ℝn是长度为ρ的相互垂直的向量(即, a · a = b · b = ρ2,a · b = 0 ), h : ℝ → ℝ是在t处可两次微分任意函数。
g的相关导数为
| g ′ | 2 = ρ 2 ( h ′ ) 2 g ′ ⋅ g ″ = ρ 2 h ′ h ″ | g ″ | 2 = ρ 2 ( ( h ′ ) 4 + ( h ″ ) 2 ) {\displaystyle {\begin{aligned}|\mathbf {g} '|^{2}&=\rho ^{2}(h')^{2}\\\mathbf {g} '\cdot \mathbf {g} ''&=\rho ^{2}h'h''\\|\mathbf {g} ''|^{2}&=\rho ^{2}\left((h')^{4}+(h'')^{2}\right)\end{aligned}}}
若现在将g的导数等同于t处γ的相应导数,可得
| γ ′ ( t ) | 2 = ρ 2 h ′ 2 ( t ) γ ′ ( t ) ⋅ γ ″ ( t ) = ρ 2 h ′ ( t ) h ″ ( t ) | γ ″ ( t ) | 2 = ρ 2 ( h ′ 4 ( t ) + h ″ 2 ( t ) ) {\displaystyle {\begin{aligned}|{\boldsymbol {\gamma }}'(t)|^{2}&=\rho ^{2}h'^{\,2}(t)\\{\boldsymbol {\gamma }}'(t)\cdot {\boldsymbol {\gamma }}''(t)&=\rho ^{2}h'(t)h''(t)\\|{\boldsymbol {\gamma }}''(t)|^{2}&=\rho ^{2}\left(h'^{\,4}(t)+h''^{\,2}(t)\right)\end{aligned}}}
关于三个未知数( ρ 、 h′(t)和h″(t) )的三个方程可以求解其中的ρ ,可得曲率半径的公式为:
ρ ( t ) = | γ ′ ( t ) | 3 | γ ′ ( t ) | 2 | γ ″ ( t ) | 2 − ( γ ′ ( t ) ⋅ γ ″ ( t ) ) 2 , {\displaystyle \rho (t)={\frac {\left|{\boldsymbol {\gamma }}'(t)\right|^{3}}{\sqrt {\left|{\boldsymbol {\gamma }}'(t)\right|^{2}\,\left|{\boldsymbol {\gamma }}''(t)\right|^{2}-{\big (}{\boldsymbol {\gamma }}'(t)\cdot {\boldsymbol {\gamma }}''(t){\big )}^{2}}}}\,,}
提高可读性省略参数t ,可得
ρ = | γ ′ | 3 | γ ′ | 2 | γ ″ | 2 − ( γ ′ ⋅ γ ″ ) 2 . {\displaystyle \rho ={\frac {\left|{\boldsymbol {\gamma }}'\right|^{3}}{\sqrt {\left|{\boldsymbol {\gamma }}'\right|^{2}\;\left|{\boldsymbol {\gamma }}''\right|^{2}-\left({\boldsymbol {\gamma }}'\cdot {\boldsymbol {\gamma }}''\right)^{2}}}}\,.}
对于一个半径为a的在上半平面的半圆
y = a 2 − x 2 y ′ = − x a 2 − x 2 y ″ = − a 2 ( a 2 − x 2 ) 3 2 . {\displaystyle {\begin{aligned}y&={\sqrt {a^{2}-x^{2}}}\\y'&={\frac {-x}{\sqrt {a^{2}-x^{2}}}}\\y''&={\frac {-a^{2}}{\left(a^{2}-x^{2}\right)^{\frac {3}{2}}}}\,.\end{aligned}}}
对于一个半径为a的在下半平面的半圆 y = − a 2 − x 2 . {\displaystyle y=-{\sqrt {a^{2}-x^{2}}}\,.}
该半径为a的圆有等于a的曲率半径。
在长轴为2a短轴为2b的椭圆中, 长轴的顶点有该椭圆上最小的曲率半径, R = b 2 a {\textstyle R={b^{2} \over a}} ; 并且短轴的顶点有该椭圆上最大的曲率半径 R = a2/b。
令椭圆的曲率半径是关于参数t的方程, 即[4]
R ( t ) = ( b 2 cos 2 t + a 2 sin 2 t ) 3 / 2 a b , {\displaystyle R(t)={\frac {(b^{2}\cos ^{2}t+a^{2}\sin ^{2}t)^{3/2}}{ab}}\,,}
其中 θ = tan − 1 ( y x ) = tan − 1 ( b a tan t ) . {\textstyle \theta =\tan ^{-1}{\Big (}{\frac {y}{x}}{\Big )}=\tan ^{-1}{\Big (}{\frac {b}{a}}\;\tan \;t{\Big )}\,.}
令椭圆的曲率半径是关于参数θ的方程, 即
R ( θ ) = a 2 b ( 1 − e 2 ( 2 − e 2 ) ( cos θ ) 2 ) 1 − e 2 ( cos θ ) 2 ) 3 / 2 , {\displaystyle R(\theta )={\frac {a^{2}}{b}}{\biggl (}{\frac {1-e^{2}(2-e^{2})(\cos \theta )^{2})}{1-e^{2}(\cos \theta )^{2}}}{\biggr )}^{3/2}\,,}
其中椭圆的偏心率e, 是
e 2 = 1 − b 2 a 2 . {\displaystyle e^{2}=1-{\frac {b^{2}}{a^{2}}}\,.}