双重哈恩多项式(Dual Hahn polynomials)是一个正交多项式,定义如下[1]
双重哈恩多项式的前几个:
双重哈恩多项式满足下列正交关系:[2]
∑ x = 0 N ( 2 x + γ + δ + 1 ) ( γ + 1 ) x ( − N ) x N ! ( − 1 ) x ( x + γ + δ + 1 ) N + 1 ( δ + 1 ) x x ! {\displaystyle \sum _{x=0}^{N}{\frac {(2x+\gamma +\delta +1)(\gamma +1)_{x}(-N)_{x}N!}{(-1)^{x}(x+\gamma +\delta +1)_{N+1}(\delta +1)_{x}x!}}} * R m ( λ ( x ) ; γ , δ , N ) R n ( λ ( x ) ; γ , δ , N ) = δ m n ( γ + n n ) ( δ + N − n N − n ) {\displaystyle R_{m}(\lambda (x);\gamma ,\delta ,N)R_{n}(\lambda (x);\gamma ,\delta ,N)={\frac {\delta _{mn}}{{\gamma +n \choose n}{\delta +N-n \choose N-n}}}}
lim β → ∞ R n ( λ ( x ) ; − N − 1 , β , γ , δ ) = R n ( λ ( lim β → ∞ R n ( λ ( x ) ; − x ) ; γ , δ , N ) {\displaystyle \lim _{\beta \to \infty }R_{n}(\lambda (x);-N-1,\beta ,\gamma ,\delta )=R_{n}(\lambda (\lim _{\beta \to \infty }R_{n}(\lambda (x);-x);\gamma ,\delta ,N)}
lim N → ∞ R n ( λ ( x ) ; β − 1 , N ( 1 − c ) c − 1 , N ) = M n ( x ; β , c ) {\displaystyle \lim _{N\to \infty }R_{n}(\lambda (x);\beta -1,N(1-c)c^{-1},N)=M_{n}(x;\beta ,c)}