Централізатором елемента групи (або напівгрупи) називається множина[1]
.
Для деякої підмножини групи (або напівгрупи) подібним чином можна ввести означення централізатора множини
.
Кільця, алгебри, кільця і алгебри Лі
Якщо — кільце або алгебра, а — підмножина кільця, то централізатором називається множина, що є централізатором мультиплікативної напівгрупи кільця.
Якщо — алгебра Лі (або кільце Лі) з добутком Лі [x, y], то централізатор підмножини алгебри рівний [2]
для всіх
Означення централізаторів для кілець Лі пов'язане з означенням для кілець наступним чином. Якщо — асоціативне кільце, то для можна задати добуток [x, y] = xy — yx. Природно, xy = yx тоді і тільки тоді, коли [x, y] = 0. Якщо ми позначимо множину із цим добутком як , то централізатор кільця у збігається з централізатором кільця Лі множини в .
Властивості
Напівгрупи
Нехай позначає централізатор множини у деякій напівгрупі. Тоді :
Із рівності для всіх елементів групи випливає, що одиниця є елементом централізатора для довільної підмножини. Нехай , тоді , тому . Нарешті домноживши рівність де зліва і справа на отримаємо рівність і тому .
Централізатор очевидно є підгрупою нормалізатора. Нехай тепер . Тоді , де — такий елемент, що і відповідно (існування такого елемента випливає з означення нормалізатора). З одержаної рівності отримуємо , що завершує доведення.
завжди містить множину , проте не обов'язково містить . Ця властивість має місце лише якщо st = ts для будь-яких і t з множини , зокрема якщо є абелевою підгрупою у .
Централізатори в кільцях і алгебрах є підкільцями і підалгебри, відповідно. Централізатори в кільцях Лі і алгебрах Лі є підкільцями Лі і підалгебрами Лі, відповідно.
Нормалізатор в кільці Лі містить централізатор .
містить множину , але не обов'язково збігається з нею.
(укр.)Гаврилків В. М. Елементи теорії груп та теорії кілець. — І.-Ф. : Голіней, 2023. — 153 с.
Isaacs, I. Martin (2009), Algebra: a graduate course, Graduate Studies in Mathematics, т. 100 (вид. reprint of the 1994 original), Providence, RI: American Mathematical Society, с. xii+516, ISBN978-0-8218-4799-2, MR2472787