Karl Friedrich Andreas Jacobi, aynı zamanda Carl Friedrich Andreas Jacobi olarak da bilinir, (2 Aralık 1795, Crawinkel - 28 Haziran 1855, Schulpforta) Alman matematikçi ve öğretmendi.
Jena'daki eğitimi sırasında Urburschenschaft'ın bir üyesi oldu. 1817 yılında Wartburg Festivali'ne katıldı. 1818'den 1819'a kadar Brandenburg an der Havel'de rektörlük ve ardından hayatının sonuna kadar Schulpforta'daki gramer okulunda matematik ve fizik profesörlüğü yaptı.
Küçük kardeşi Andreas Jacobi (1801-1875) de Schulpforta'da matematikçi olarak çalışmıştır.
Jacobi üçgen geometrisi ile ilgilenmiştir. Jacobian şekli[1] kenarlarında ek üçgenler bulunan bir △ A B C {\displaystyle \triangle ABC} üçgenidir ( A D B , B E C , C F A {\displaystyle ADB,BEC,CFA} ) ve bu üçgende bitişik ek üçgenlerdeki komşu açılar eşittir. Jacobi, ilgili D i {\displaystyle D_{i}} ile △ A B C {\displaystyle \triangle ABC} orijin üçgeninin karşılıklı köşeleri arasındaki transversallerin bir noktada kesiştiğini kanıtlamıştır. Bu ifade bugün Jacobi teoremi olarak adlandırılmaktadır.[2] Berkhan/Meyer[3] ve Florian Cajori[4] tarafından yapılan matematik tarihi çalışmalarında, Karl Wilhelm Feuerbach, August Leopold Crelle ve diğerleriyle birlikte 19. yüzyılın başında Almanya'da üçgen geometrisini teşvik eden, ancak 19. yüzyılın ikinci yarısında bu alandaki araştırmaların yeniden başlamasına kadar çalışmaları unutulan matematikçiler arasında sayılmaktadır.
1825 tarihli çalışmasında Crelle tarafından tanıtılan (1875 yılında Henri Brocard[5] tarafından yeniden keşfedilen) bir üçgenin Brocard noktalarının bir yapısını da vermiştir. Bu noktalar, üçgenin köşeleriyle birleşen doğruları üçgenin kenarlarıyla eşit açılar oluşturan üçgenin içindeki noktalar olarak tanımlanır.
1834 yılında Jean Henri van Swinden'in 1790 ve 1816 yıllarında Amsterdam'da basılan Grondbeginsels der Meetkunde (Geometrinin Temelleri) adlı kitabını kendi eklemeleriyle Almanca olarak yayımladı.