เซนเซอร์รูปภาพ

เซนเซอร์ CCD บนแผงวงจรแบบยืดหยุ่น
เซนเซอร์รูปภาพบนแผงวงจรหลักของกล้อง Nikon Coolpix L2 6 เมกกะพิกเซล

เซนเซอร์รูปภาพ (อังกฤษ: image sensor) คืออุปกรณ์ที่แปลงภาพที่เห็นด้วยตาเป็นสัญญาณอิเล็กทรอนิกส์ โดยมากแล้วจะเป็นส่วนประกอบในกล้องดิจิทัล และอุปกรณ์ที่เกี่ยวกับภาพอื่นๆ เซนเซอร์ในยุคแรกๆ นั้นจะมีลักษณะเป็นกระบอกกล้องวีดิทัศน์ ต่อมาจึงพัฒนาเป็นอุปกรณ์ถ่ายเทประจุ หรือเซนเซอร์พิกเซลตอบสนอง (charge-coupled device - CCD) แบบกึ่งตัวนำเมทัลอ็อกไซด์ควบเสริม (complementary metal-oxide-semiconductor - CMOS)

ข้อแตกต่างระหว่าง CCD และ CMOS

กล้องดิจิทัลในปัจจุบันมักใช้เซนเซอร์รูปภาพแบบ CCD หรือ CMOS ซึ่งทั้งสองประเภทสามารถตรวจจับแสงและแปลงเป็นสัญญาณอิเล็กโทรนิคได้เหมือนกัน แต่เทคโนโลยีเซนเซอร์ CCD มีมานานกว่าและแทบจะเรียกได้ว่าเป็นเซนเซอร์รูปภาพที่ครองตลาดสำหรับผู้บริโภค โดย CCD เริ่มมีมาตั้งแต่ปี 1993 และพัฒนาเรื่อยมาจนกระทั่ง CMOS เริ่มมามีส่วนแบ่งตลาดและเกือบจะทดแทนเทคโนโลยี CCD ในปี 2008 [1]

เซนเซอร์แบบ CCD มีลักษณะเป็นอุปกรณ์อนาล็อก ประกอบไปด้วยหลอดโฟโต้ไดโอดทำด้วยซิลิคอน เมื่อแสงตกกระทบตัวชิปแล้วจะถูกเก็บไว้เป็นประจุอิเล็กโทรนิกปริมาณน้อยๆ ในตัวเซนเซอร์ ซึ่งประจุเหล่านี้จะถูกแปลงไปเป็นแรงดันไฟฟ้าทีละหนึ่งพิกเซลขณะที่ถูกอ่านจากตัวชิป จากนั้นกระแสไฟในตัวกล้องจะแปลงแรงดันไฟฟ้านี้ไปเป็นข้อมูลดิจิทัลอีกทีหนึ่ง

ชิปแบบ CMOS มีลักษณะเป็นเซนเซอร์พิกเซลตอบสนอง ที่สร้างโดยกระบวนการประจุกึ่งตัวนำสำหรับ CMOS ซึ่งจะมีแผงวงจรเพิ่มขึ้นมาข้างเซนเซอร์ภาพเพื่อแปลงพลังงานแสงเป็นแรงดันไฟฟ้า จากนั้นแผงวงจรเสริมบนตัวชิปก็จะแปลงแรงดันไฟฟ้านั้นเป็นข้อมูลดิจิทัลได้ทันที

ชิปแบบ CMOS (Complementary Metal Oxide Semiconductor) : ใช้กับ โทรศัพท์มือถือ ราคาประหยัด ถึง ปานกลาง ซึ่งเป็น โทรศัพท์มือถือ ส่วนมากในท้องตลาด ในการคำนวณค่าของแสงที่มาตกกระทบที่แต่ละ Photosite จะมีการประจุค่านั้นโดยตรง เช่นเดียวกับ CCD แต่การส่งผ่านข้อมูลต้องอาศัยสายข้อมูลขนาดเล็ก ไปทำการประมวลผลอีกทอดหนึ่ง อาศัยเทคโนโลยีการผลิตแบบเก่า ซึ่งเป็นแบบเดียวกับการผลิต Microprocessor จึงเต็มไปด้วยสัญญาณรบกวน และมีผลทำให้เกิดการลดทอนคุณภาพของภาพถ่าย ตัวเซนเซอร์เองมีความผิดพลาดในการส่งข้อมูลสูง มีความไวต่อแสงน้อย จึงมีผลทำให้คุณภาพของภาพถ่ายที่ได้ด้อยกว่า CCD ส่วนการผลิตสามารถทำได้บนแผ่นซิลิคอนมาตรฐานทั่วไป จึงทำให้ต้นทุนในการผลิตต่ำกว่า CCD

ชิปแบบ CCD (Charge Coupled Device) : เป็นเทคโนโลยีที่ใหม่กว่า สามารถถ่ายภาพได้คุณภาพที่ดีกว่า แต่ก็มีต้นทุนที่สูงกว่าเช่นกัน มักนำมาใช้กับ โทรศัพท์มือถือ ราคาแพง ในการคำนวณค่าของแสงที่มาตกกระทบที่แต่ละ Photosite จะมีการประจุค่านั้นโดยตรง เช่นเดียวกับ CMOS และจะแปลงค่าแสงที่เป็น อนาล็อก ให้เป็นแบบ ดิจิทัล ซึ่งกระบวนการเหล่านี้เกิดขึ้นอย่างรวดเร็ว และส่งประจุได้โดยตรงไปยัง Chip โดยไม่เกิดการตัดทอนสัญญาณ หรือสิ่งที่รบกวนสัญญาณภาพ ซึ่งเกิดจากเทคโนโลยีกระบวนการผลิตขั้นสูง เพื่อให้เซนเซอร์มีคุณภาพ และไวต่อแสงที่มาตกกระทบ ซึ่งทำให้คุณภาพของภาพถ่ายที่ได้ดีกว่า CMOS แต่ CCD ก็ยังต้องใช้พลังงานมากกว่า CMOS อยู่ และการผลิดต้องใช้แผ่นซิลิคอนแบบพิเศษที่ผลิตขึ้นมาโดยเฉพาะ จึงทำให้ต้นทุนในการผลิตนั้นสูงกว่า CMOS ไปด้วย

เทคโนโลยีทั้งสองแบบไม่ได้มีข้อได้เปรียบที่ชัดเจนในด้านคุณภาพของภาพ ในด้านหนึ่ง เซนเซอร์แบบ CCD จะมีโอกาสเกิดรอยเปื้อนแนวยาวจากแหล่งแสงที่สว่างจ้าได้ยามที่ตัวเซนเซอร์ถูกใช้งานอย่างหนัก แต่อุปกรณ์ถ่ายเทประจุระดับสูงจะไม่ประสบปัญญานี้ ส่วนเซนเซอร์ CMOS ก็มีโอกาสเกิดผลข้างเคียงที่ไม่พึงประสงค์จากชัตเตอร์แบบหมุนได้มากกว่า

การประยุกต์ใช้เซนเซอร์ CMOS สามารถทำได้โดยใช้อุปกรณ์ประกอบที่น้อยกว่า ใช้พลังงานน้อยกว่า และสามารถแสดงผลได้เร็วกว่า CCD ส่วนเซนเซอร์ CCD นั้นเป็นเทคโนโลยีที่มีการพัฒนามายาวนานกว่าและเทียบเคียงได้กับ CMOS ในหลายๆ ด้าน[2][3] นอกจากนี้แล้ว ต้นทุนการผลิต CMOS ก็ต่ำกว่าเซนเซอร์ CCD

สถาปัตยกรรมที่เป็นลูกผสมระหว่าง CCD และ CMOS มีชื่อว่า "sCMOS" โดยประกอบไปด้วยแผงวงจรรวมสำหรับอ่านผล CMOS (CMOS readout integrated circuits - ROICs) ที่เชื่อมต่อวัสดุซับสเตรทภาพ CCD ทั้งนี้ เทคโนโลยีดังกล่าวถูกพัฒนาเพื่ออุปกรณ์ตรวจจับภาพอินฟราเรดและในปัจจุบันได้นำมาปรับใช้กับเทคโนโลยีอุปกรณ์ตรวจจับที่มีซิลิคอนเป็นส่วนประกอบ อีกกรรมวิธีหนึ่ง จะใช้ระยะที่เล็กมากๆ ที่มีในเทคโนโลยี CMOS รุ่นใหม่ๆ ไปใช้กับโครงสร้างที่คล้ายกับ CCD ด้วยเทคโนโลยีของ CMOS ทั้งหมด หรือคือนำเทคโลโยีดิจิทัลไปใช้กับโครงสร้างอนาล็อก โดยวิธีนี้จะใช้การแยกประตูโพลีซิลิคอนแต่ละช่องด้วยระยะที่เล็กมากๆ เซนเซอร์เหล่านี้ยังคงอยู่ในขั้นตอนวิจัยและพัฒนา และจะสามารถผนวกเอาศักยภาพต่างๆ ของทั้ง CCD และ CMOS เข้าไว้ด้วยกัน

นอกจากนี้ นับแต่ปี 2006 ทางบริษัทผู้ผลิตเซนเซอร์ Panasonic ยังได้พัฒนาเซนเซอร์ที่เรียกว่า Live-MOS โดยใช้เทคโนโลยี MOS ซึ่งให้ภาพคุณภาพสูงแต่กินพลังงานน้อยกว่า CCD เนื่องจากในแต่ละพิกเซลจะมีส่วนเชื่อมต่อที่น้อยลง ภาพที่ได้จะเสมือนส่งผ่านให้ชมแบบ "ทันที" (live) แม้จะไม่ได้ใช้กรรมวิธีการแปลงแบบดั้งเดิมในเซนเซอร์ CCD

คุณสมบัติของ Image Sensor

 1. ความลึกสีหรือ Color Depth หมายถึง จำนวนเฉดสีที่ Image Sensor สามารถถ่ายทอดออกมาได้ ยิ่งความลึกสีมาก จำนวนเฉดสีของภาพก็จะมากขึ้น หมายถึง เราจะได้ภาพที่มีคุณภาพดีขึ้นด้วย ความลึกสีจะบอกเป็นจำนวน Bit/สี หรือ Bit/3สี เช่น CCD ให้ภาพความลึกสี 12bit/สี ก็เท่ากับ 36 bit จำนวนเฉดสีที่ Image Sensor สามารถถ่ายทอดได้สามารถคำนวณได้โดยใช้สูตร

จำนวนเฉดสี/สี = 2 ยกกำลัง Bit สี

จำนวนเฉดสีทั้งหมด = จำนวนเฉดสี/สี ยกกำลัง 3

เช่น Image Sensor ให้ภาพ 8 bit/สี จะมีเฉดสี 28 = 256 สี จำนวนเฉดสีทั้งหมดเท่ากับ 2563 = 16.77 ล้านเฉดสี

Image Sensor ของกล้องดิจิทัลในปัจจุบันจะให้ความลึกสีที่ 8 bit/สี ถ้าเป็นกล้องที่คุณภาพดีจะอยู่ที่ 10 หรือ 12 bit/สี

และถ้าเป็นกล้องระดับมืออาชีพจะอยู่ที่ 12-14 bit/สี ส่วนสแกนเนอร์คุณภาพสูงจะอยู่ที่ 16 bit/สี

12 bit/สี = 36 bit = 68,719, 476,736 หรือ 68,719 ล้านเฉดสี

16 bit/สี = 48 bit = 281,474, 976,710,656 หรือ 2.8 ล้านล้านเฉดสี

จะเห็นว่าจำนวน Bit สียิ่งมากจะยิ่งได้ภาพที่มีเฉดสีดีขึ้นเรื่อย ๆ ซึ่งกล้องระดับมืออาชีพจะเน้นเรื่องจำนวน Bit สีอย่างมาก

ยิ่ง Bit สีมาก การไล่ระดับโทนสีในส่วนสว่างและส่วนมืดซึ่งเป็นปัญหาของกล้องดิจิทัลก็จะลดลงเรื่อย ๆ

( ภาพจำนวน Bit สี )

2. Image Size หรือขนาดภาพ หมายถึงจำนวน Pixel ที่จะปรากฏบนภาพ ยิ่งจำนวน Pixel มากจะได้ภาพที่สามารถนำไปขยายใหญ่ได้มากขึ้นโดยไม่เกิดการแตก คล้ายกับฟิล์มเกรนหยาบกับเกรนละเอียด ขนาดภาพของ Image Sensor จะบอกเป็นจำนวน Effective Pixel เช่น กล้องมี Effective Pixel ขนาด 6.17 ล้านพิกเซล

การดูว่าจำนวน Pixel เท่าไรจะเพียงพอต่อการใช้งาน จะดูจากขนาดภาพที่ต้องการใช้งานเป็นหลัก เช่น ต้องการภาพไปใช้ส่ง E-Mail ซึ่งภาพจะมีขนาดประมาณ 4.87 แสนพิกเซล ใช้กล้องขนาด 1 ล้านพิกเซลก็เพียงพอ แต่ถ้าไปใช้งานขยายภาพขนาด 8.25x11.5 นิ้ว ควรมีความละเอียดประมาณ 8.5 ล้านพิกเซลจะได้ภาพคุณภาพสูงสุด เป็นต้น การใช้ Image Sensor ที่มีความละเอียดสูงเกินกว่าขนาดภาพที่ต้องการไม่เกิดประโยชน์ในการใช้งานใด ๆนอกจากจะต้องจ่ายค่ากล้องที่มีราคาแพงขึ้น ใช้แบตเตอรี่มากขึ้น เปลืองการ์ดเก็บข้อมูลมากขึ้น

จำนวน Pixel ของตามนุษย์ประมาณ 120 ล้านพิกเซล ฟิล์ม 35 มม.เกรนละเอียดมาก ๆ เช่น Fujichrome Provia 100F ขนาด 135มม.จะมีจำนวน Pixel อยู่ประมาณ 24 ล้านพิกเซล

3. Aspect Ratio หรือ สัดส่วนภาพ หรือสัดส่วนของภาพด้านกว้าง:ด้านยาว สัดส่วนตรงนี้มีความสำคัญกับการนำภาพไปใช้งาน เช่น ต้องการใช้อัดขยายภาพขนาด 4x6 นิ้ว เท่ากับภาพมีสัดส่วน 1:1.5 แต่ใช้กล้องดิจิทัลที่มีสัดส่วนกว้างยาว 1200x1600 พิกเซล หรือ 1:1.33 สัดส่วนกว้างยาวของภาพที่ต้องการและ Image Sensor ไม่เท่ากัน เมื่อนำภาพไปขยายจะได้ภาพไม่เต็มกระดาษ หรือเกิดการตัดส่วนภาพบนกระดาษไป กล้องดิจิทัลระดับมือสมัครเล่นจะมีสัดส่วนภาพอยู่ประมาณ 1:1.33 เพื่อให้เข้ากับจอมอนิเตอร์หรือ TV ส่วนกล้องดิจิทัลระดับมืออาชีพจะมีสัดส่วนประมาณ 1:1.5 ซึ่งเท่ากับฟิล์มขนาด 35 มม.

4. ความไวแสง หรือ Sensitivity ความไวแสงของ Image Sensor เป็นความไวแสงที่เทียบจากความไวแสงของฟิล์มในมาตรฐานของ ISO (International Standard Organization) ยิ่งความไวแสงสูงจะทำให้สามารถใช้ความเร็วชัตเตอร์สูงหรือช่องรับแสงแคบได้มากกว่า กล้องดิจิทัลส่วนใหญ่จะเริ่มความไวแสงที่ความไวแสงประมาณ ISO 100 แต่สามารถเลือกความไวแสงได้หลายค่าในกล้องตัวเดียว เช่น 100 , 200, 400, 800, 1600 ซึ่งไม่เหมือนฟิล์มที่จะไม่สามารถเปลี่ยนความไวแสงฟิล์มได้(ยกเว้นนำไปล้างเพิ่มหรือลดเวลาล้าง) และสามารถถ่ายภาพแต่ละภาพโดยใช้ความไวแสงที่แตกต่างกันได้ (ส่วนฟิล์มต้องตั้งความไวแสงค่าเดียวตลอดเวลา) ทำให้สะดวกในการใช้งานในสภาพแสงต่าง ๆ กัน

การปรับตั้งความไวแสงสูงขึ้นในกล้องดิจิทัลจะเกิดสัญญาณรบกวน ทำให้ภาพมีคุณภาพลดลงไปบ้าง เช่นเดียวกับการเพิ่มเวลาล้างของฟิล์มถ่ายภาพ

5. ขนาดของ Image Sensor หากเราใช้ตัว Image Sensor ขนาดใหญ่มีแนวโน้มจะให้คุณภาพที่ดีกว่า Image Sensor ขนาดเล็ก (จำนวน pixel เท่ากัน) เพราะจะมีขนาดของ Photosite ใหญ่กว่า ทำให้ไวต่อแสง มี Bit สีมากกว่า มีความคมชัดและรายละเอียดดีกว่า แต่ราคาจะแพงมากขึ้นตามขนาดของ Image Sensor ที่ใหญ่ขึ้น ตัวกล้องจะใหญ่ขึ้นตามด้วย จึงใช้เฉพาะกล้องระดับมืออาชีพเท่านั้นชนิดของ Image Sensor

ประสิทธิภาพ

ฟิลเตอร์กันรังสีอินฟราเรด ถอดจากกล้อง Canon EOS 350D

ตัววัดประสิทธิภาพเซนเซอร์มีอยู่ด้วยกันหลายตัวที่สามารถนำมาใช้ประเมินประสิทธิภาพของเซนเซอร์รูปภาพ เช่น ช่วงรายละเอียดแสง (dynamic range), สัดส่วนสัญญาณต่อคลื่นรบกวน (signal-to-noise ratio) เป็นต้น สำหรับตัวเซนเซอร์ประเภทที่เทียบเคียงกันได้นั้น ช่วงรายละเอียดแสงและสัดส่วนดังกล่าวจะสูงขึ้นเมื่อขนาดเพิ่มมากขึ้น

การแยกสี

ตัวอย่างการทำงานของปริซึ่มสองสี

เซนเซอร์ภาพโดยตัวมันเองแล้วมีลักษณะเป็น​ "ขาว-ดำ" เพื่อให้ตัวเซนเซอร์ส่งผ่านสี จึงต้องใช้กรรมวิธีการแยกสี ซึ่งมีอยู่ด้วยกัน 3 ประเภท

เซนเซอร์พร้อมตัวกรองโมเสก

พิกเซลภาพของเซนเซอร์จะจัดเรียงบนระนาบเดียว และแต่ละพิกเซลจะถูกครอบด้วยตัวกรองของแต่ละสี โดยการจัดวางตำแหน่งตัวกรองมีอยู่ด้วยกันหลายวิธี ตามความไวแสงและการคัดลอกสี ยิ่งความเร็วมากขึ้น สีที่ได้จะยิ่งผิดเพี้ยน

  • RGGB หรือ เซนเซอร์เบเยอร์ (Bayer sensor) มีต้นทุนต่ำและพบได้มากที่สุด เพราะเริ่มมีใช้แรกสุด จะใช้ตัวกรองสีที่ส่งผ่านแสงแดง, เขียว หรือน้ำเงินไปยังเซนเซอร์พิกเซลที่กำหนดไว้ ทำให้เกิดช่องตารางซ้อนที่ไวต่อสีแดง, เขียว และน้ำเงิน ส่วนสีที่ขาดไปจะถูกผสมโดยใช้อัลกอริทึ่มแบบ demosaic ทั้งนี้ เพื่อหลีกเลี่ยงข้อมูลสีที่ได้จากการผสมแล้ว เทคนิคประเภทสุ่มคู่ตำแหน่งสีจะใช้กรรมวิธีแบบ piezo เพื่อขยับเซนเซอร์สีแบบขั้นพิกเซล เซนเซอร์เบเยอร์ยังมีตัวเซนเซอร์แสงด้านหลัง ที่แสงลอดเข้าไปตกกระทบซิลิคอนที่ไวต่อแสงจากด้านตรงข้ามกับตำแหน่งตัวต้านทานประจุและสายไฟ เพื่อให้ส่วนต่อเชื่อมเหล็กด้านตัวอุปกรณ์ไม่ไปบังแสง และประสิทธิภาพดีขึ้น[4][5]
  • RGBW มีความไวต่อแสงและระดับยอมรับการรับแสง (exposure latitude) มากกว่า (โดยปกติจะไวแสงในระดับ 1.5-2 และ 1 สต็อป) สำหรับเซนเซอร์ RGBW แบบพิเศษ ได้แก่ เซนเซอร์ RGBW ของบริษัทโกดัก
  • RGEB (แดง - เขียว - เขียวมรกต - น้ำเงิน)
  • CGMY (น้ำเงิน - เขียว - บานเย็น - เหลือง)
  • RYYB (Huawei SuperSpectrum) เป็นเซนเซอร์แบบใหม่ที่ถูกวิจัยและคิดค้นขึ้นโดยบริษัท Huawei ร่วมกับบริษัท Leica โดยเปลี่ยนจากการรับแสงสีเขียวในเซนเซอร์ RGGB เป็นสีเหลือง ทำให้ประสิทธิภาพในการรับแสงดีขึ้นถึง 40% เซนเซอร์ RYYB ถูกนำไปใช้ครั้งแรกใน Huawei P30 Series และมีแนวโน้มว่าจะถูกนำไปใช้ในกล้องรุ่นใหม่ของ Leica ต่อไป

เซนเซอร์พร้อมพิกเซลครบสี

เทคโนโลยีที่เพื่อให้แต่ละพิกเซลแยกแม่สีครบทั้งสามสี แบบแรกเริ่มมีวางจำหน่ายโดยบริษัทซิกม่า และแบบที่สองเริ่มมีปรากฏเป็นต้นแบบในช่วงกลางปี 2008

เซนเซอร์โฟวีออน (Foveon) X3

เซนเซอร์ตรวจจับภาพของโฟวีออนใช้เซนเซอร์พิกเซลที่เรียงเป็น 3 ชั้น แดง, เขียว, แดง ทำการแยกแสงโดยอาศัยคุณสมบัติดูดซับแสงที่ไม่ขึ้นกับความยาวคลื่นของซิลิคอน เพื่อให้ทุกๆ ตำแหน่งสามารถรับสัมผัสช่องสีทั้งสามได้ทั้งหมด

เซนเซอร์ X3 มีใช้ในกล้องของซิกม่า

เซนเซอร์ RGB ของนิคอน

นิคอน ได้จดสิทธิบัตรเซนเซอร์ไว้เมื่อวันที่ 9 สิงหาคม 2007[6] โดยตัวเซนเซอร์แยกแม่สีจะประกอบไปด้วยหลอดโฟโต้ไดโอดและเลนส์ย่อย (microlens) สามเลนส์ในแต่ละพิกเซล เลนส์ย่อยดังกล่าวจะส่งผ่านแสงไปยังกระจกสองสีบานแรก ซึ่งส่วนที่เป็นสีน้ำเงินจะผ่านกระจกไปตกกระทบกับตัวตรวจจับสีน้ำเงินเข้ม ส่วนสีเขียวและแดงจะสะท้อนไปยังกระจกบานที่สอง ซึ่งจะสะท้อนสีเขียวไปยังตัวตรวจจับสีเขียว และส่งผ่านสีแดงกับส่วนที่เป็นอินฟราเรดไปยังกระจกบานที่สาม กระจกบานนี้จะสะท้อนส่วนสีแดงไปยังตัวตรวจจับสีแดงและส่วนดูดซับคลื่นอินฟราเรด[7]

แม้ว่าตัวต้นแบบของเซนเซอร์นี้จะมีมาตั้งแต่ปี 2008 แต่สิทธิบัตรดังกล่าวดูจะยังไม่สามารถนำมาผลิตใช้งานในอนาคตอันใกล้เนื่องจากความซับซ้อนของเทคโนโลยี

หากเปรียบเทียบกับระบบแยกสีอื่นๆ ยกเว้นระบบสามเซนเซอร์แล้ว เทคโนโลยีนี้มีข้อได้เปรียบตรงที่ประสิทธิภาพการใช้แสง คิดเป็น 1.5 เท่าเมื่อเทียบกับเซนเซอร์ RGBW และ 3 เท่าเมื่อเทียบกับเซนเซอร์ที่มีตัวกรองเบเยอร์ หากเทียบกับเซนเซอร์โฟวีออน X3 เทคโนโลยีนี้มีข้อได้เปรียบในเรื่องสี และหากเทียบกับระบบสามเซนเซอร์แล้ว ระบบนี้ใช้ประโยชน์จากกระจกและไม่จำเป็นต้องมีการจัดเรียงตำแหน่งระบบเลนส์ที่แม่นยำแบบ 3CCD[6]

ระบบแยกสีสามเซนเซอร์

ระบบแยกสีสามเซนเซอร์ หรือที่เรียกว่า 3CCD ใช้เซนเซอร์รูปภาพแบบภินทนะ (discrete image sensor) สามตัว โดยแยกสีด้วยปริซึ่มสองสี ซึ่งถือได้ว่าเป็นเซนเซอร์ที่มีคุณภาพดีที่สุด และมีราคาแพงกว่าเซนเซอร์เดี่ยว แสงจะลอดผ่านเข้ามาในตัวกล้อง และตกกระทบกับปริซึ่มคู่ ซึ่งทำหน้าที่แยกแสงออกเป็นแม่สีหลัก แดง, เขียว และน้ำเงิน โดยแต่ละลำแสงจะส่องผ่านไปยังเซนเซอร์ (โดยมากแล้วจะใช้ CCD จึงเป็นที่มาของชื่อ 3CCD) ทั้งนี้ ระบบการแยกสามสีนี้มักมีใช้ในกล้องถ่ายวีดิทัศน์ระดับกลางขึ้นไป

ข้อได้เปรียบของระบบแยกสีสามเซนเซอร์เมื่อเทียบกับเซนเซอร์เดี่ยว

  • การส่งผ่านสีดีกว่า และไม่ประสบปัญหาลายลูกคลื่น (moire)
  • ความละเอียดภาพสูงกว่า เพราะไม่จำเป็นต้องมีการกรองเพื่อจัดการลดลายลูกคลื่น
  • ไวต่อแสงกว่าและระดับจุดรบกวน (noise) ต่ำกว่า
  • สามารถปรับแต่งค่าตัวกรองให้กับแต่ละตัวเซนเซอร์ทำให้การแปลงค่าสีกับแหล่งแสงที่ไม่ปกติทำได้ดีกว่า

ข้อเสียของระบบแยกสีสามเซนเซอร์เมื่อเทียบกับเซนเซอร์เดี่ยว

  • ขนาดที่ใหญ่กว่า
  • ระบบนี้ไม่สามารถใช้กับเลนส์ที่มีระยะโฟกัสสั้น
  • ปัญหาข้อมูลสี เนื่องจากระบบสามเซนเซอร์ต้องการการจัดเรียงตำแหน่งที่แม่นยำ ดังนั้นหากเซนเซอร์มีขนาดใหญ่ขึ้นเพื่อให้ได้ความละเอียดที่ครบถ้วน ก็จะยิ่งยากที่จะให้ได้ความแม่นยำดังกล่าว

เซนเซอร์ที่ใช้ในกล้องดิจิทัล

ความกว้าง ความสูง อัตราส่วนลักษณะ จำนวนพิกเซลจริง เมกกะพิกเซล ตัวอย่างรุ่นกล้อง
320 240 4:3 aspect ratio 76,800 0.07 ต้นแบบ Steven Sasson (1975)
640 480 4:3 aspect ratio 307,200 0.3 Apple QuickTake 100 (1994)
832 608 4:3 aspect ratio 505,856 0.5 Canon Powershot 600 (1996)
1,024 768 4:3 aspect ratio 786,432 0.8 Olympus D-300L (1996)
1,280 960 4:3 aspect ratio 1,228,800 1.3 Fujifilm DS-300 (1997)
1,280 1,024 5:4 1,310,720 1.3 Fujifilm MX-700, Fujifilm MX-1700 (1999), Leica Digilux (1998), Leica Digilux Zoom (2000)
1,600 1,200 4:3 aspect ratio 1,920,000 2 Nikon Coolpix 950, Samsung GT-S3500
2,012 1,324 3:2 aspect ratio 2,663,888 2.74 Nikon D1
2,048 1,536 4:3 aspect ratio 3,145,728 3 Canon PowerShot A75, Nikon Coolpix 995
2,272 1,704 4:3 aspect ratio 3,871,488 4 Olympus Stylus 410, Contax i4R (แม้ว่าจริงๆ แล้วเซนเซอร์ CCD มีขนาดสี่เหลี่ยมจัตุรัส 2,272x2,272)
2,464 1,648 3:2 aspect ratio 4,060,672 4.1 Canon EOS 1D
2,560 1,920 4:3 aspect ratio 4,915,200 5 Olympus E-1, Sony Cyber-shot DSC-F707, Sony Cyber-shot DSC-F717
2,816 2,112 4:3 aspect ratio 5,947,392 5.9 Olympus Stylus 600 Digital
3,008 2,000 3:2 aspect ratio 6,016,000 6 Nikon D40, Nikon D50, Nikon D70, Pentax K100D
3,072 2,048 3:2 aspect ratio 6,291,456 6.3 Canon EOS 10D, Canon EOS 300D
3,072 2,304 4:3 aspect ratio 7,077,888 7 Olympus FE-210, Canon PowerShot A620
3,456 2,304 3:2 aspect ratio 7,962,624 8 Canon EOS 350D
3,264 2,448 4:3 aspect ratio 7,990,272 8 Olympus E-500, Olympus SP-350, Canon PowerShot A720 IS
3,504 2,336 3:2 aspect ratio 8,185,344 8.2 Canon EOS 30D, Canon EOS-1D Mark II, Canon EOS-1D Mark II N
3,520 2,344 3:2 aspect ratio 8,250,880 8.25 Canon EOS 20D
3,648 2,736 4:3 aspect ratio 9,980,928 10 Olympus E-410, Olympus E-510, Panasonic Lumix DMC-FZ50, Fujifilm FinePix HS10
3,872 2,592 3:2 aspect ratio 10,036,224 10 Nikon D40x, Nikon D60, Nikon D3000, Nikon D200, Nikon D80, Pentax K10D, Pentax K200D, Sony Alpha A100
3,888 2,592 3:2 aspect ratio 10,077,696 10.1 Canon EOS 40D, Canon EOS 400D, Canon EOS 1000D
4,064 2,704 3:2 aspect ratio 10,989,056 11 Canon EOS-1Ds
4,000 3,000 4:3 aspect ratio 12,000,000 12 Canon Powershot G9, Fujifilm FinePix S200EXR, Nikon Coolpix L110
4,256 2,832 3:2 aspect ratio 12,052,992 12.1 Nikon D3, Nikon D3S, Nikon D700, Fujifilm FinePix S5 Pro
4,272 2,848 3:2 aspect ratio 12,166,656 12.2 Canon EOS 450D
4,032 3,024 4:3 aspect ratio 12,192,768 12.2 Olympus PEN E-P1
4,288 2,848 3:2 aspect ratio 12,212,224 12.2 Nikon D2Xs/D2X, Nikon D300, Nikon D90, Nikon D5000, Pentax K-x
4,900 2,580 16:9 12,642,000 12.6 RED ONE Mysterium
4,368 2,912 3:2 aspect ratio 12,719,616 12.7 Canon EOS 5D
7,920 (2,640 × 3) 1,760 3:2 aspect ratio 13,939,200 13.9 Sigma SD14, Sigma DP1 (ชั้นพิกเซล 3 ชั้น 4.7 เมกกะพิกเซลในแต่ละชั้น ในเซนเซอร์โฟวีออน X3)
4,672 3,104 3:2 aspect ratio 14,501,888 14.5 Pentax K20D, Pentax K-7
4,752 3,168 3:2 aspect ratio 15,054,336 15.1 Canon EOS 50D, Canon EOS 500D
4,928 3,262 3:2 aspect ratio 16,075,136 16.1 Nikon D7000, Pentax K-5
4,992 3,328 3:2 aspect ratio 16,613,376 16.6 Canon EOS-1Ds Mark II, Canon EOS-1D Mark IV
5,184 3,456 3:2 aspect ratio 17,915,904 17.9 Canon EOS 7D, Canon EOS 60D, Canon EOS 600D, Canon EOS 550D
5,270 3,516 3:2 aspect ratio 18,529,320 18.5 Leica M9
5,616 3,744 3:2 aspect ratio 21,026,304 21.0 Canon EOS-1Ds Mark III, Canon EOS-5D Mark II
6,048 4,032 3:2 aspect ratio 24,385,536 24.4 Sony α 850, Sony α 900, Nikon D3X , Nikon D600 Series , Nikon D750
7,500 5,000 3:2 aspect ratio 37,500,000 37.5 Leica S2
7,212 5,142 4:3 aspect ratio 39,031,344 39.0 Hasselblad H3DII-39
7,216 5,412 4:3 aspect ratio 39,052,992 39.1 Leica RCD100
7,264 5,440 4:3 aspect ratio 39,516,160 39.5 Pentax 645D
7,320 5,484 4:3 aspect ratio 40,142,880 40.1 Phase One IQ140
8,176 6,132 4:3 aspect ratio 50,135,232 50.1 Hasselblad H3DII-50, Hasselblad H4D-50, Hasselblad H4D-200MS
11,250 5,000 9:4 56,250,000 56.3 Better Light 4000E-HS (เมื่อสแกน)
8,956 6,708 4:3 aspect ratio 60,076,848 60.1 Hasselblad H4D-60
8,984 6,732 4:3 aspect ratio 60,480,288 60.5 Phase One IQ160, Phase One P65+
10,320 7,752 4:3 aspect ratio 80,000,640 80 Leaf Aptus-II 12, Leaf Aptus-II 12R
10,328 7,760 4:3 aspect ratio 80,145,280 80.1 Phase One IQ180
9,372 9,372 1:1 87,834,384 87.8 Leica RC30
12,600 10,500 6:5 132,300,000 132.3 Phase One PowerPhase FX/FX+ (เมื่อสแกน)
18,000 8,000 9:4 144,000,000 144 Better Light 6000-HS/6000E-HS (เมื่อสแกน)
21,250 7,500 17:6 159,375,000 159.4 Seitz 6x17 Digital (เมื่อสแกน)
16,352* 12,264* 4:3 aspect ratio 200,540,928 200.5 Hasselblad H4D-200MS
18,000 12,000 3:2 aspect ratio 216,000,000 216 Better Light Super 6K-HS (เมื่อสแกน)
24,000 15,990 2,400:1,599 383,760,000 383.8 Better Light Super 8K-HS (เมื่อสแกน)
30,600 13,600 9:4 416,160,000 416.2 Better Light Super 10K-HS (เมื่อสแกน)
62,830 7,500 6,283:750 471,225,000 471.2 Seitz Roundshot D3 (เลนส์ 80 มม.) (เมื่อสแกน)
62,830 13,500 6,283:1,350 848,205,000 848.2 Seitz Roundshot D3 (เลนส์ 110 มม.) (เมื่อสแกน)
38,000 38,000 1:1 1,444,000,000 1,444 Pan-STARRS PS1
157,000 18,000 157:18 2,826,000,000 2,826 Better Light 300 mm lens Digital (เมื่อสแกน)

เซนเซอร์เฉพาะทาง

เซนเซอร์เฉพาะทางมีไว้สำหรับการใช้งานประเภทต่างๆ เช่น ภาพตรวจจับความร้อน, การอัดภาพหลายช่วงคลื่น, กล้องส่องลำคอ, กล้องรังสีแกมม่า, เซนเซอร์สำหรับรังสีเอกซ์ และการใช้งานทางดาราศาสตร์ที่ต้องการความแม่นยำสูง

บริษัทผู้ผลิต

บริษัทผู้ผลิตรายใหญ่ที่จำหน่ายเซนเซอร์รูปภาพ ได้แก่

  • Agilent
  • Aptina
  • Canesta
  • Canon
  • Cypress Semiconductor
  • Eastman Kodak
  • ESS Technology
  • Fuji
  • MagnaChip
  • Matsushita
  • Micron Technology
  • Mitsubishi
  • Nikon
  • OmniVision Technologies
  • PixArt Imaging
  • Pixim
  • Samsung
  • Sharp
  • Sony
  • STMicroelectronics
  • Toshiba
  • TowerJazz
  • TransChip
  • Trusight

อ้างอิง

แหล่งข้อมูลอื่น

Read other articles:

Chemical compound CMX521Legal statusLegal status US: Investigational drug Identifiers IUPAC name 4-amino-7-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-methylpyrrolo[2,3-d]pyrimidine-5-carboxamide CAS Number2077178-99-3 YPubChem CID126520436UNII76US2C2X3FChemical and physical dataFormulaC13H17N5O5Molar mass323.3 g·mol−13D model (JSmol)Interactive image SMILES CC1=NC(=C2C(=CN(C2=N1)[C@H]3[C@@H]([C@@H]([C@H](O3)CO)O)O)C(=O)N)N InChI InChI=1S/C13H17N5O5/c1-4-16-...

 

Juan Atilio Bramuglia Ministro de Relaciones Exteriores y Culto de la Nación Argentina 4 de junio de 1946-11 de agosto de 1949Presidente Juan Domingo PerónPredecesor Juan Isaac CookeSucesor Hipólito Jesús Paz Presidente de la Junta Nacional de Coordinación Política 24 de octubre de 1945-21 de noviembre de 1946Predecesor Entidad creadaSucesor Juan Domingo Perón (como presidente del Partido Único de la Revolución) Gobernador de la Provincia de Buenos AiresDe facto 12 de enero de 1945-1...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) دوري كرة القدم الإسكتلندي الدرجة الثانية 1938–39 تفاصيل الموسم دوري كرة القدم الاسكتلندي الدرجة الثانية...

Pastel de azúcar moravo Tipo Tarta de caféConsumoOrigen PensilvaniaDatos generalesIngredientes Harina, patatas machacadas, levadura, mantequilla, azúcar moreno, canela[editar datos en Wikidata]El pastel de azúcar moravo es un pastel de café dulce que es a menudo hecho en la ciudad colonial de Salem, Carolina del Norte y en otros asentamientos moravos en Pensilvania. Está hecho con una masa de levadura dulce enriquecida con puré de patatas. La masa se deja reposar para elevars...

 

EU's home affairs and justice policies This article is part of a series onPolitics of the European Union Member states (27) Austria Belgium Bulgaria Croatia Cyprus Czech Republic Denmark Estonia Finland France Germany Greece Hungary Ireland Italy Latvia Lithuania Luxembourg Malta Netherlands Poland Portugal Romania Slovakia Slovenia Spain Sweden Candidate coun...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2019) سيسيليا أوستبيرغ معلومات شخصية الميلاد 15 يناير 1991 (32 سنة)  مواطنة السويد  الوزن 150 رطل  الحياة العملية المهنة لاعبة هوكي الجليد  الرياضة هوكي الجليد...

مايكل باركس (بالإنجليزية: Michael Parks)‏  معلومات شخصية اسم الولادة (بالإنجليزية: Harry Samuel Parks)‏  الميلاد 24 أبريل 1940(1940-04-24)هالة، كاليفورنيا، الولايات المتحدة الوفاة 9 مايو 2017 (77 سنة)لوس أنجلوس، الولايات المتحدة الجنسية أمريكي الأولاد جيمس باركس  [لغات أخرى]‏  الحياة...

 

Paul de Smet de Naeyer Geboren 13 mei 1843Gent Overleden 9 september 1913Brussel Premier van België Aangetreden 25 februari 1896 Einde termijn 24 januari 1899 Voorganger Jules de Burlet Opvolger Jules Vandenpeereboom Premier van België Aangetreden 5 augustus 1899 Einde termijn 2 mei 1907 Voorganger Jules Vandenpeereboom Opvolger Jules de Trooz Portaal    Politiek Paul Joseph graaf de Smet de Naeyer (Gent, 13 mei 1843 – Brussel, 9 september 1913) was een Belgisch katholiek politi...

 

Former service that allowed user-generated songs to be added to Rock Band video games Parts of this article (those related to generally not-past tense) need to be updated. Please help update this article to reflect recent events or newly available information. (October 2015) DeveloperHarmonixTypeOnline serviceLaunch dateMarch 4, 2010; 13 years ago (2010-03-04)Platform(s)Xbox 360PlayStation 3WiiStatusDiscontinued The Rock Band Network (abbreviated RBN) was a downloadable cont...

2022 video game 2022 video gameGroundedCover artDeveloper(s)Obsidian EntertainmentPublisher(s)Xbox Game StudiosDirector(s)Adam BrenneckeProducer(s)Adam BrenneckeDesigner(s)Andy ArtzBobby NullMatthew PerezProgrammer(s)Roby AtaderoArtist(s)Kazunori ArugaWriter(s)Mitch LoidoltMichael ChuComposer(s)Justin E. BellFinishing Move Inc.Marc RebilletEngineUnreal Engine 4[1]Platform(s)WindowsXbox OneXbox Series X/SReleaseSeptember 27, 2022Genre(s)SurvivalMode(s)Single-player, multiplayer Grounde...

 

  此条目的主題是台灣教育界人士。关于同名或類似名的其它條目描述,請見「張文雄」。 張文雄台灣教育人士 个人资料性别男出生(1938-06-10)1938年6月10日 日治臺灣台北市永樂町大稻埕(今台北市大同區)逝世2016年4月3日(2016歲—04—03)(77歲) 中華民國台北市中正區台大醫院籍贯台北市 学历 台灣中原理工學院化學系學士 日本早稻田大學應用化學研究所博士 经历...

 

Shopping mall in California, United StatesSerramonte CenterGrand Court at Serramonte CenterLocationDaly City, California, United StatesCoordinates37°40′20″N 122°28′12″W / 37.672136°N 122.470093°W / 37.672136; -122.470093Address3 Serramonte Center Daly City, CA 94015 United StatesOpening date1968DeveloperFred and Carl GellertOwnerRegency CentersNo. of stores and services104No. of anchor tenants3Total retail floor area1,139,906 square feet (105,900.7 m2)...

2022 cartoon film Tom and Jerry: Snowman's LandDVD coverDirected byDarrell Van CittersScreenplay byJase RicciStory byWill FinnJase RicciBased onTom and Jerryby William Hanna andJoseph BarberaProduced byAshley PostelwaiteKimberly S. MoreauDarrell Van CittersStarringKath SoucieKevin Michael RichardsonWilliam HannaLaraine NewmanStephen StantonRick ZieffCarlos AlazraquiKimberly BrooksJoey D'AuriaRegi DavisEdited byMichael D'AmbrosioMusic byVivek MaddalaAnimation byRenegade AnimationSlap Happy Car...

 

Beksan JebengPara penari Beksan JebengNama asliBeksan JebengInstrumenGamelanAsal Keraton Yogyakarta, Daerah Istimewa Yogyakarta, Indonesia Beksan Jebeng adalah tarian yang halus tetapi dibawakan dengan karakter yang gagah karena dalam tarian ini menggunakan alat seperti tameng atau perisai dari kulit yang berbentuk setengah lingkaran. Pegangannya terbuat dari kayu yang memanjang dan sedikit melengkung.[1] Kanjeng Gusti Paku Alam II yang pertama menciptakan Beksan Jebeng. Kemudian tari...

 

Pour les articles homonymes, voir Chasse (homonymie). En haut, une police proportionnelle, c’est-à-dire à chasse variable ; en bas, une police non proportionnelle, c’est-à-dire à chasse fixe. Une chasse fixe conduit à un alignement vertical des caractères. Police d'écriture Courier. La chasse, ou avance, est, en typographie, la largeur du glyphe (dessin) d’un caractère, augmentée de ses approches (les petites espaces qui le séparent du caractère précédent et du caract...

Gajah ditangkap dengan metode khedda Mela shikar (bahasa Assam: 'মেলা চিকাৰ) adalah metode tradisional untuk menangkap gajah liar yang akan dibawa ke penangkaran.[1] Dengan menggunakan metode ini, gajah liar akan dijerat dengan tali oleh orang yang menunggangi punggung gajah yang sudah dilatih yang disebut koonki.[2] Praktik ini dilakukan di bagian timur laut India, khususnya di Assam, dan merupakan salah satu metode yang digunakan di India kuno. Metode-m...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. EU Energy Union Strategy (bahasa Indonesia: Strategi Persatuan Energi) untuk negara-negara Uni Eropa diterbitkan pada Februari 2015 oleh Komisi Eropa, mereka bekerjasama dalam bidang komunikasi di interkoneksi jaringan listrik. Berfokus pada keama...

 

Merina Nomenclatura biológica Ovis orientalis ariesRegión de origen Península Ibérica[1]​CaracterísticasTipo ovinoPelaje largo, fino, rizado, inferior a 24 micrasCuernos cuernos en espiral, solamente en el macho, como rarezaCabeza sostenido por un cuello cortoPatas cortas[editar datos en Wikidata] Ovejas merinas y cabras retintas en la Fiesta de la Trashumancia en Madrid. Dos ovejas merinas pastando delante de un rebaño de cabras. Merino es un grupo de razas de ovejas do...

Porto da Póvoa de Varzim Porto da Póvoa de Varzim Localização País (PT) Localização Póvoa de Varzim Coordenadas 41° 22′ 26″ N, 8° 45′ 55″ O Detalhes Tipo de porto Marítimo Estatísticas Website https://www.amn.pt/DGAM/Capitanias/PovoaVarzim/Paginas/Capitania-do-Porto-da-Povoa-do-Varzim.aspx entrada para a Lota. O Porto da Póvoa de Varzim, que na Idade Média se denominava Porto de Varzim (Porto de Veracim em português arcaico), é um porto construído Enseada da Póvoa, n...

 

Тема цієї статті може не відповідати загальним критеріям значущості Вікіпедії. Будь ласка, допоможіть підтвердити значущість, додавши посилання на надійні вторинні джерела, які є незалежними для цієї теми. Якщо значущість залишиться непідтвердженою, стаття може бути о...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!