Diferencijalni račun

Grafikon funkcije, nacrtan u crnom bojom, i tangenta te funkciju, nacrtana crvenom bojom. Nagib tangentne linije jednak je derivatu funkcije na označenoj tački.

U matematici, diferencijalni račun je podpolje računa[1] koje se bavi proučavanjem stopa kojima se veličine menjaju. To je jedan od dva tradicionalna dela računa, pri čemu je drugi integralni račun, proučavanje područja ispod krive.[2]

Primarni predmeti proučavanja u diferencijalnom računu su derivacija funkcije, srodni pojmovi kao što su diferencijali i njihove primene. Derivat funkcije pri izabranoj ulaznoj vrednosti opisuje brzinu promene funkcije u blizini te ulazne vrednosti. Proces pronalaženja derivata se naziva diferencijacija. Geometrijski, derivat u tački je nagib tangentne linije na grafikonu funkcije u toj tački, pod uslovom da derivat postoji i da je definisan u toj tački. Za funkciju realnih vrednosti jedne realne promenljive, derivat funkcije u tački generalno određuje najbolju linearnu aproksimaciju funkcije u toj tački. Diferencijalni račun i integralni račun su povezani fundamentalnim teoremom računa, koji navodi da je diferencijacija obrnuti proces integracije.

Diferencijacija nalazi primene u skoro svim kvantitativnim disciplinama. Na primer, u fizici, derivat pomeranja pokretnog tela u odnosu na vreme je brzina tela, a derivat brzine u odnosu na vreme je ubrzanje. Derivat momenta tela u odnosu na vreme jednak je sili primenjenoj na telo; preraspodela izraza ovog derivata dovodi do poznate jednačine F = ma, povezane sa Njutnovim drugim zakonom kretanja. Brzina hemijske reakcije je derivat. U operacionim istraživanjima, derivati određuju najefikasnije načine za transport materijala i dizajniranje fabrika.

Derivati se često koriste za pronalaženje maksimuma i minimuma funkcije. Jednačine koje uključuju derivate nazivaju se diferencijalne jednačine i fundamentalne su za opisivanje prirodnih fenomena. Derivati i njihove generalizacije pojavljuju se u mnogim oblastima matematike, kao što su kompleksna analiza, funkcionalna analiza, diferencijalna geometrija, teorija mera i apstraktna algebra.

Izvod

Tangetna linija u (x,f(x))
Izvod raznih tačaka diferencijabilne funkcije

Pretpostavimo da su x i y realni brojevi i da je y funkcija od x, to jest, za svaku vrednost x postoji odgovarajuća vrijednost y. Ovaj odnos se može zapisati kao y = f(x). Ako je f(x) jednačina za pravu liniju (zvana linearna jednačina), onda postoje dva realna broja m i b takva da je y = mx + b. U ovoj „formi nagiva i preseka”, izraz m se naziva nagib i može se odrediti iz formule:

gde je simbol Δ (veliko grčko slovo delta) skraćenica za „promena u”. Odatle sledi da je Δy = m Δx.

Generalna funkcija nije linija, tako da nema nagib. Geometrijski, izvod od f u tački x = a je nagib tangentne linije funkcije f u tački a (pogledajte sliku). To se često označava sa f ′(a) u Lagranžovoj notaciji ili dy/dx|x = a u Lajbnicovoj notaciji. Kako je izvod nagib linearne aproksimacije od f u tački a, izvod (zajedno sa vrednošću f u a) određuje najbolju linearnu aproksimaciju, ili linearizaciju, od f u blizini tačkie a.

Ako svaka tačka a u domenu funkcije f ima izvod, onda postoji funkcija koja šalje svaku tačku a u derivat od f u a. Na primer, ako je f(x) = x2, onda je funkcija izvoda f ′(x) = dy/dx = 2x.

Blisko srodna notacije je diferencijal funkcije.[3][4] Kad su x i y realne promenljive, derivat f od x je nagib tangetne linije na grafikonu f od x. Budući da su izvor i cilj funkcije f jednodimenzionalni, derivat od f je realni broj. Ako su x i y vektori, tada najbolja linearna aproksimacija grafu f zavisi od toga kako se f menja u više smerova odjednom. Uzimajući najbolju linearnu aproksimaciju u jednom pravcu, određuje se parcijalni derivat, koji se obično označava y/x. Linearizacija f u svim pravcima odjednom se naziva totalni derivat.[5]

Reference

  1. ^ „Definition of differential calculus”. www.merriam-webster.com (на језику: енглески). Приступљено 2018-09-26. 
  2. ^ „"Integral Calculus - Definition of Integral calculus by Merriam-Webster". www.merriam-webster.com (на језику: енглески). Приступљено 2018-05-01. 
  3. ^ „Differential”. Wolfram MathWorld. Приступљено 24. 2. 2022. „The word differential has several related meaning in mathematics. In the most common context, it means "related to derivatives." So, for example, the portion of calculus dealing with taking derivatives (i.e., differentiation), is known as differential calculus.
    The word "differential" also has a more technical meaning in the theory of differential k-forms as a so-called one-form.
     
  4. ^ „differential - Definition of differential in US English by Oxford Dictionaries”. Oxford Dictionaries - English. Архивирано из оригинала 3. 1. 2014. г. Приступљено 13. 4. 2018. 
  5. ^ „Math 150B Exam 3 Solution | California State University - KeepNotes”. keepnotes.com. Приступљено 2023-09-27. 

Literatura

Spoljašnje veze

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!