Момент инерције је мера инертности тела при ротационом кретању. Момент инерције је аналоган маси код транслаторног кретања. Појаву инерције први је проучавао Галилео Галилеј. Инерцију описује I Њутнов закон, по коме свако тело задржава стање мировања или равномерног праволинијског кретања док га неко друго тело не присили да то стање промени. Инертност је својство тела да се одупире промени стања мировања или равномерног праволинијског кретања. Тела веће масе су инертнија (тромија). Маса је мера интерности тела.
Момент инерције (знак I или J) је једнак збиру умножака масе m и квадрата удаљености r од осе ротације сваке честице која чини тело:
Момент инерције је заправо мера тромости за вртњу или ротацијско кретање. Може се рећи да је момент инерције ротацијска аналогија масе. Што је момент инерције неког тела већи то га је теже покренути у ротацију или зауставити његову ротацију. Међутим, за разлику од масе, момент инерције није нека непромењива величина; он зависи од осе око које се дешава ротација тела. Математичка дефиниција момента инерције I материјалне тачке масе m за неку осу a је:
где је r удаљеност те тачке од осе ротације. Мерна јединица за момент инерције је kgm².
За неко тело састављено од N материјалних честица момент инерције за неку осу је једнак збиру момената инерције свих материјалних честица за ту исту осу:
Ово је непрактичан израз за неко континуирано тело за који би требало знати тачан број и положај свих честица. Уместо тога интегрирају се моменти инерције свих диференцијалних маса dm:
Уз претпоставку да је густина тела ρ по целој запремини једнака, добија се:
Моменти инерције за оси које пролазе кроз тежиште тела називају се властитим моментима инерције. Иако горња математичка формулација вреди потпуно генерално, момент инерције за неку осу која пролази изван тежишта тела се може израчунати помоћу Стајнеровог правила које се може овако срочити:
Ово је правило врло важно и елементарно. Умножак масе тела и квадрата удаљености тежишта тела од тражене осе се назива положајни момент инерције.
Математички изричај Штајнеровог правила може се записати на следећи начин:
Из свега изложенога треба уочити неколико чињеница битних за разумевање материје:
Момент тромости неког тела зависи од облика тела, расподеле масе, положаја осе ротације. На пример, ако је m маса тела, r његов полупречник, а оса ротације уједно и оса симетрије, момент инерције на пример шупљег ваљка или прстена износи:
хомогено испуњеног ваљка или кружне плоче:
хомогено испуњене кугле:
Момент тромости хомогено испуњеног штапа којем је оса ротације нормална на дужину штапа налази се на половини дужине штапа l:
а на крају је штапа:
где је: l - дужина штапа. Мерна је јединица момента тромости килограм пута квадратни метар (kg m2).[1]
Може се рећи да ( r 2 4 − r 1 4 ) = ( ( r 1 + t ) 4 − r 1 4 ) = ( 4 r 1 3 t + 6 r 1 2 t 2 + 4 r 1 t 3 + t 4 ) {\displaystyle \left(r_{2}^{4}-r_{1}^{4}\right)=\left(\left(r_{1}+t\right)^{4}-r_{1}^{4}\right)=\left(4r_{1}^{3}t+6r_{1}^{2}t^{2}+4r_{1}t^{3}+t^{4}\right)} , и због r 1 >> t {\displaystyle r_{1}>>t} та заграда се може поједноставити у ( 4 r 1 3 t + 6 r 1 2 t 2 + 4 r 1 t 3 + t 4 ) ≈ 4 r 1 3 t {\displaystyle \left(4r_{1}^{3}t+6r_{1}^{2}t^{2}+4r_{1}t^{3}+t^{4}\right)\approx 4r_{1}^{3}t} . Коначно, за танкозидну цев произлази, I x = I y = π r 3 t {\displaystyle I_{x}=I_{y}=\pi {r}^{3}{t}} .
За материјалну тачку се момент инерције изражава формулом I=mr². Момент инерције тела у општем случају рачуна се сумирањем момената инерције свих његових саставних делова. Код неких геометријских фигура се на тај начин добијају математички једноставније формуле, док код сложенијих тела сагласно томе повећава и комплексност рачуна који се изискује за њихово одређивање и примену. У општем случају можемо тај поступак описати овако:
За лопту он се рачуна обрасцем 2 m r 2 5 {\textstyle {\frac {2mr^{2}}{5}}} , за ваљак (хомогени диск) m r 2 2 {\textstyle {\frac {mr^{2}}{2}}} , а за хомогени штап 2 m l 2 12 {\textstyle {\frac {2ml^{2}}{12}}} , где је r {\displaystyle r} полупречник (код лопте и ваљка), а l {\displaystyle l} дужина штапа. За израчунавање момента инерције често се користи Штајнерова теорема. У питању је скаларна величина, а често се користи у тензорском облику.
Савијање или флексија (енгл. bending, flexure) је оптерећење које делује нормално на уздужну осу носача. За разлику од осног оптерећења (истезање и притисак), при савијању штапа деформише се уздужна оса штапа. Деформирана уздужна оса зове се еластична линија или прогиб. Разликује се чисто савијање и попречно савијање. При чистом савијању све су компоненте унутрашњих сила једнаке нули, осим момента савијања. При попречном савијању осим момента савијања појављује се још и попречна сила која узрокује смицање. Чисто савијање зове се још и савијање спреговима, а попречно савијање, савијање силама. Момент савијања узрокује нормална напрезања σ која се замишљају раздељенима по пресеку сразмерно удаљености од неутралне осе. Неутрална оса пролази кроз тежиште проматраног пресека. Класична једнакост која одређује напрезање у греди услед деловања чистог савијања је:
где је: σ {\displaystyle {\sigma }} - напрезање услед савијања, M - момент савијања око неутралне осе x, y - нормална удаљеност од неутралне осе x, Ix - момент тромости или момент инерције око неутралне осе x.
Максимално напрезање на савијање σ<суб>маx</суб> појављује се у тачки која је најудаљенија од неутралне осе ymax:
где је: W x {\displaystyle {W_{x}}} - момент отпора пресека.
Прогиб носача δ {\displaystyle {\delta }} произлази из диференцијалне једнакости еластичне линије:
Уобичајене вредности за максималне моменте савијања, прогибе, моменте тромости и моменте отпора пресека могу се наћи у таблицама.