Прво је дефинисана и коришћена за описивање брзина честица у идеалним гасовима, где се честице слободно крећу унутар непокретног контејнера без међусобне интеракције, изузев врло кратких судара у којима међусобно или са својим окружењем размењују енергију и моментум. Термин „честица“ у овом контексту односи се само на гасовите честице ( атоме или молекуле), а претпоставља се да је систем честица достигао термодинамичку равнотежу . [1] Енергије таквих честица прате оно што је познато као Максвел-Болцманова статистика, а статистичка расподела брзина изведена је изједначавањем енергија честица са кинетичком енергијом .
Математички, Максвел-Болцманова расподела је хи дистрибуција са три степена слободе (компоненте вектора брзине у Еуклидовом простору), са параметром скале који мери брзине у јединицама пропорционалним квадратном корену од (однос температуре и масе честица). [2]
Максвел-Болцманова расподела резултат је кинетичке теорије гасова, која пружа поједностављено објашњење многих основних гасних својстава, укључујући притисак и дифузију . [3] Максвел-Болцманова расподела се у основи примењује на брзине честица у три димензије, али се испоставило да зависи само од брзине ( износа брзине) честица. Расподела вероватноће брзине честице указује на то које су брзине вероватније: честица ће имати брзину случајно одабрану из расподеле и већа је вероватноћа да ће бити унутар једног опсега брзина од другог. Кинетичка теорија гасова односи се на класични идеалан гас, који је идеализација стварних гасова. У стварним гасовима постоје различити ефекти (нпр. Ван дер Валсове интеракције, вртложни ток, релативистичка ограничења брзине и интеракције квантне размене ) који могу учинити њихову расподелу брзине другачијом од Максвел-Болцмановог модела. Међутим, разређени гасови на уобичајеним температурама понашају се готово као идеалан гас и Максвелова расподела брзине је одлична апроксимација за такве гасове. Идеалне плазме, које су јонизовани гасови са довољно малом густином, често имају и расподелу честица која је делимично или у потпуности максвеловска. [4]
Дистрибуцију је први извео Максвел 1860. године на хеуристичким основама. [5] Болцман је касније, 1870-их, спровео значајна истраживања физичког порекла ове дистрибуције.
Дистрибуција се може извести на основу тога што максимализује ентропију система. Списак извода су:
Максимална расподела вероватноће ентропије у фазном простору, са ограничењем очувања просечне енергије ;
Под претпоставком да систем од интереса садржи велики број честица, удео честица унутар бесконачно малог елемента тродимензионалног простора брзине,, центриран на вектор брзине величине, је, у којима
где је маса честица и је производ Болцманове константне и термодинамичке температуре .
Елемент простора брзине можемо записати као d = d d d, за брзине у стандардном картезијанском координатном систему или као d = д d у стандардном сферном координатном систему, где d је елемент пуног угла. У овом случају, је дата као функција расподеле вероватноће, правилно нормализована тако да d преко свих брзина једнака је један. У физици плазме, расподела вероватноће се често помножи са густином честица, тако да је интеграл резултујуће функције расподеле једнак густини.
Максвелова функција расподеле за честице које се крећу само у једном смеру, ако је овај правац , је
који се могу добити интегрисањем тродимензионалне форме дане изнад и .
Препознавши симетрију , може се интегрисати преко пуног угла и написати расподела вероватноће брзина као функција
Ова функција густине вероватноће даје вероватноћу, по јединици брзине, налажења честице брзином близу . Ова једначина је једноставно Максвел-Болцманова расподела (дата у инфо кутији) са параметром расподеле . Максвел-Болцманова расподела еквивалентна је хи дистрибуцији са три степена слободе и параметром скале .
Дарвин-Фовлер-овом методом средњих вредности добија се Максвел-Болцманова расподела као тачан резултат.
Однос према 2D Максвел-Болцмановој расподели
За честице ограничене да се крећу у равни, расподела брзине је дата са
Ова расподела се користи за опис система у равнотежи. Међутим, већина система не започиње у равнотежном стању. Еволуцијом система ка његовом равнотежном стању управља Болцманова једначина . Једначина предвиђа да ће за интеракције кратког домета равнотежна расподела брзине следити Максвел-Болцманову расподелу. Десно је симулација молекуларне динамике (МД) у којој је 900 честица тврде сфере ограничено да се креће у правоугаонику. Они комуницирају помоћу савршено еластичних судара. Систем се покреће из равнотеже, али расподела брзине (у плавој боји) брзо конвергира у 2D Максвел-Болцман расподелу (у наранџастој боји).
Типичне брзине
Средња брзина , највероватнија брзина ( режим) vp и средња квадратна брзина могу се добити из својстава Максвелове расподеле.
}}-->Укратко, типичне брзине су повезане на следећи начин:
Средња квадратна брзина директно је повезана са брзином звукаc у гасу, за
где је адијабатски индекс, f је број степена слободе појединачног молекула гаса. За горњи пример, двоатомни азот (приближни ваздух) на 7002300000000000000♠300, [7] и
права вредност ваздуха се може апроксимализовати коришћењем просечне моларне тежине ваздуха ( 7001290000000000000♠29 ), дајући 7002347000000000000♠347 на 7002300000000000000♠300 (корекције за променљиву влажност ваздуха су реда од 0,1% до 0,6%).
Просечна релативна брзина
где је тродимензионална расподела брзине
Интеграл се лако може извршити променом на координате и
Извођење и сродне дистрибуције
Максвел – Болцман статистика
Првобитно извођење из 1860. године Џејмса Клерка Максвела био је аргумент заснован на молекуларним сударима кинетичке теорије гасова као и одређеним симетријама у функцији расподеле брзине; Максвел је такође дао рани аргумент да ови молекуларни судари имају тенденцију ка равнотежи. [5][8] После Максвела, Лудвиг Болцман је 1872. године [9] такође извео расподелу на механичким основама и тврдио да би гасови временом требало да теже ка тој расподели, услед судара (види Х-теорему ). Касније (1877) [10] је поново извео расподелу у оквиру статистичке термодинамике . Изводи у овом одељку су у складу са Болцмановим извођењем из 1877. године, почев од резултата познатог као Максвел -Болцман статистика (из статистичке термодинамике). Максвел -Болцманова статистика даје просечан број честица пронађених у датом једночестичном микростању. Под одређеним претпоставкама, логаритам фракције честица у датом микростању сразмеран је односу енергије тог стања и температуре система:
Претпоставке ове једначине су да честице не интерагују међусобно и да су класичне; то значи да се стање сваке честице може сматрати независно од стања осталих честица. Поред тога, претпоставља се да су честице у топлотној равнотежи. [1][11]
Ова веза се може написати као једначина увођењем нормализујућег фактора:
(1)
где:
Ni је очекивани број честица у једночестичном микростању i,
Деноминатор у једначини ( 1 ) је једноставно нормализујући фактор тако да односи доприносе јединству- другим речима, то је нека врста партицијске функције (за једнопартицијски систем, а не уобичајена партицијска функција читавог система).
Будући да су брзина и велоцитет повезани са енергијом, једначина ( 1 ) се може користити за добијање односа између температуре и брзине честица гаса. Све што је потребно је открити густину микростања у енергији, која се одређује поделом простора импулса на регионе једнаке величине.
где је п2 квадрат импулсног вектора p = [ пк, пи, пз ]. Стога једначину ( 1 ) можемо преписати као:
(3)
где је З партицијска функција, која одговара деноминатору у једначини ( 1 ). Овде је m молекулска маса гаса, Т термодинамичка температура и kБолцманова константа . Ова дистрибуција је пропорционалан функцији густине вероватноћеfп за проналажење молекула са овим вредностима компоненти импулса, па:
(4)
Нормализујућа константа може се одредити препознавањем да вероватноћа молекула има одређени замах мора бити 1. Интегрисањем експоненцијала у ( 4 ) по свим pk,p y и pz добија се фактор од
Тако да је нормализована функција расподеле:
Сматра се да је расподела производ три независне нормално дистрибуиране променљиве, , и, са одступањем . Поред тога, може се видети да ће величина моментума бити распоређена као Максвел-Болцманова расподела, са . Максвел-Болцманова расподела за импулс (или једнако за брзине) може се темељније добити помоћу Х-теореме у равнотежи у оквиру кинетичке теорије гасних оквира.
Расподела енергије
Расподела енергије је импозантна
(7)
где је бесконачно мали запремински простор импулса фазног простора који одговара енергетском интервалу . Користећи сферну симетрију односа дисперзије енергије и импулса, ово се може изразити у на следећи начин :
(8)
Користећи тада ( 8 ) у ( 7 ) и изражавајући све у смислу енергије, добијамо
Будући да је енергија пропорционална збиру квадрата три нормално распоређене компоненте импулса, ова расподела енергије може се записати еквивалентно гама расподели, користећи параметар облика, и параметар скале, .
Користећи теорему о равнотежи, с обзиром да је енергија равномерно распоређена између сва три степена слободе у равнотежи, такође можемо поделити у скуп хи-квадрат дистрибуција, где енергија по степену слободе,, дистрибуира се као хи-квадрат дистрибуција са једним степеном слободе, [12]
У равнотежи, ова расподела ће важити за било који број степени слободе. На пример, ако су честице ригидни масени диполи фиксног диполног момента, имаће три транслациона степена слободе и два додатна ротациона степена слободе. Енергија у сваком степену слободе биће описана према горњој хи-квадрат расподели са једним степеном слободе, а укупна енергија биће распоређена према хи-квадрат дистрибуцији са пет степена слободе. То има импликације у теорији специфичне топлоте гаса.
Максвел-Болцман-ова расподела се такође може добити узимајући у обзир да је гас врста квантног гаса за који се може извршити апроксимација ε >> к Т.
Расподела за вектор брзине
Схватајући да је густина вероватноће брзине fv пропорционална функцији густине вероватноће импулса за
и користећи p = m v добијамо
што је Максвел-Болцманова расподела брзине. Вероватноћа проналаска честице брзином у бесконачно малом елементу [ dvk, dvy, dv z ] о брзини v = [ vk, v y, vz] је
Као и моментум, и за ову расподелу се види да је производ три независне нормално дистрибуиране променљиве, , и, али са одступањем . Такође се може видети да је Максвел-Болцманова расподела брзине за векторску брзину [v k, vy, vz ] је умножак расподеле за сваки од три правца:
где је расподела за један правац
Свака компонента вектора брзине има нормалну расподелу са средњом вредношћу и стандардна девијација, тако да вектор има тродимензионалну нормалну расподелу, одређену врсту мултиваријантне нормалне расподеле, са средњом вредности и коваријанција, где је идентитет матрица.
Расподела брзине
Максвел-Болцманова расподела брзине следи непосредно из расподеле вектора брзине, горе. Имајте на уму да је брзина
где и су сферни координатни углови вектора брзине. Интеграција функције густине вероватноће брзине преко пуних углова даје додатни фактор од . Расподела брзине са заменом брзине за збир квадрата векторских компонената:
У n -димензионалном простору
У n- димензионалном простору Максвел-Болцманова расподела постаје:
Дистрибуција брзине постаје:
Следећи интегрални резултат је користан:
где је функција Гама . Овај резултат се може користити за израчунавање тренутака функције расподеле брзине:
^Nitrogen at room temperature is considered a "rigid" diatomic gas, with two rotational degrees of freedom additional to the three translational ones, and the vibrational degree of freedom not accessible.
^Boltzmann, L., "Weitere studien über das Wärmegleichgewicht unter Gasmolekülen." Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, mathematisch-naturwissenschaftliche Classe, 66, 1872, pp. 275–370.
^Boltzmann, L., "Über die Beziehung zwischen dem zweiten Hauptsatz der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht." Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Classe. Abt. II, 76, 1877, pp. 373–435. Reprinted in Wissenschaftliche Abhandlungen, Vol. II, pp. 164–223, Leipzig: Barth, 1909. Translation available at: http://crystal.med.upenn.edu/sharp-lab-pdfs/2015SharpMatschinsky_Boltz1877_Entropy17.pdfАрхивирано на сајту Wayback Machine (5. март 2021)
^McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, (1994) ISBN0-07-051400-3