Ky kriter është formuluar nga inxhinieri amerikan Harry Nyquist dhe mundëson, që nga nga karakteristikat frekuencore të sistemit të hapur, të konkludojmë mbi stabilitetitin e sistemit të mbyllur. Për më tepër, ky kriteri i Nyquist-it gjithashtu mundëson përcaktimin e stabilitetit relativ dhe ndikimin e parametrave të sistemit në stabilitetin e përgjithshëm të sistemit. Disa nga arsyet (përparesitë) e aplikimit të kriterit të Nyquist-it janë[1]:
Stabiliteti i sistemit të mbyllur mund të përcaktohet duke analizuar karakteristikat frekuencore (amplitudore dhe fazore) të sistemit të hapur, të cilat karakteristika mund të inçizohen eksperimentalisht.
Kriteri mund të aplikohet edhe në rastet kur nuk dihen ekuacionet diferenciale që përshkruajnë sistemin
Duke aplikuar kriterin e Nyquist-it mund të shqyrtohet stabiliteti i sistemeve me parametra të shpërndarë dhe me parametra të koncentruar.
Problemi se një sistem është stabil apo jo, thelbësisht ka të bëjë më atë se a ka sistemi pole në anën e djathtë të rrafshit kompleks. Gjatë shqyrtimeve që bëri, Nyquisti ka vërejtur se problemi mund të zgjidhet më anë të parimit të argumentit. Kjo bëhet në menyrë të atillë që lakorja e mbyllur zgjedhet e tillë që të përfshijë tërë anën e djathë të rrafshit kompleks dhe të ketë orientimin në drejtim të kundërt të akrepave të orës.[2] Lakoren e tillë e quajmë lakorja e Nyquist-it. Natyrisht, lakorja e Nyquist-it (nga definimi i parimit të argumentit) nuk mund të kalojë nepër pole apo zero. Polet dhe zerot potenciale nepër të cilat mund të kalojë lakorja e Nyquist-it ndodhen në boshtin imagjinarë. Problemi mund të evitohet duke ju shmangur këtyre poleve the zerove me gjysmërrathë të vegjës me rreze pambarimisht të vogël (teorema e Koshiut). Andaj të gjitha polet që ndodhen në anënë e djathë të domenit kompleks do përfishen nga lakorja e Nyquist-it, duke indukuar kështu jostabilitetin e sistëmit.
Kriteri i Nyquist-it i bazuar në lokuset e sistemit me qark të hapur
Më herët thamë se kriteri i Nyquist-it mundëson caktimin e stabilitetit të sistemit të mbyllur duke analizuar sistemit me qark të hapur. Të supozojmë se Funksioni transmetues - funksioni transmetues i sistemit me qark të mbyllur është :
andaj funksioni transmetues i sistemit me qark të mbyllur në rastin e riveprimit njësi do jetë:
Me fjalë tjera, sistemi i hapur do jetë stabil kur hodografi i Mihajllovit të kalojë aq kuadrante sa është rendi i ekuacionit karakteristik.
Në rastin e tillë, që edhe sistemi i mbyllur të jetë stabil poashtu duhet që ndryshimi i argumentit të polinomit karakteristik të sistemit të mbyllur poashtu të jetë , ku është rendi i sistemit. Pra:
duke pasur parasysh ekuacionet paraprake do fitojmë shprehjen:
Andaj mund të themi se sistemi i mbyllur do jetë stabil atëherë kur ndërrimi i argumentit të vektorit:
kur frekuenca ndërron vlerën nga zero në infinit. Thënë ndryshe, sistemi i mbyllur do jetë stabil nëse diagrami i Nyquist-it për sistemin në fjalë nuk përfshin brenda pikën kritike
Sistemi i hapur jostabil
Sistemi i hapur mund të jetë jostabil dhe të përmbajë pole në anën e djathë të rrafshit kompleks nëse:
ka më shumë riveprime plotësuese
përmban një ose më shumë elemente jostabile
Në bazë të parimit të argumentit do kemi:
nga analiza paraprake për vektorin do kemi:
respektivisht:
Nga shprehja paraprake mund të nxjerrim kushtin që sistemi i mbyllur të jetë stabil duhet që diagrami polar i atij sistemi ta përfshijë pikën kritike në kah të kundërt me akrepat e orës.
Sistemi i hapur në kufi të stabilitetit
Për sistemin me qark të hapur do themi se ndodhet në kufi të stabilitetit kur funksionit transmetues i tij ka formën:
ku paraqet rendin e astatismit të sistemit, poashtu edhe numin e integratorëve në sistem. Pra kemi të bëjmë më pole të pastërta imagjinare (pra ndodhen në boshtin imagjinar) që sistemit të hapur i japin karakterin oscilues. Siç thamë tek përkufizimi i lakores së Nyquist-it, ajo nuk guxon të kalojë nepër pole apo zero. Andaj në rastin tonë polet astatike do i tejkalojmë më gjysmërrathë të vegjël, dhe funksioni transmetues merr formën:
Analiza e mëtutjeshme për caktimin e stabilitetit të sistemit të mbyllur shkon sikurse në rastin kur sistemi i hapur ishte stabil, i cili rast është përshkruar më lartë.
Ndikimi i astatizmit në sistem është zhvendosja e diagramit polar për aq kuadrantë sa është rendi i astatizmit të sistemit.[4][5]