Четвёртая степень для алгебраических уравнений является наивысшей, при которой существует аналитическое решение в радикалах в общем виде (то есть при любых значениях коэффициентов).
Так как функция является многочленом чётной степени, она имеет один и тот же предел при стремлении к плюс и к минус бесконечности. Если , то функция возрастает до плюс бесконечности с обеих сторон, а значит, имеет глобальный минимум. Аналогично, если , то функция убывает до минус бесконечности с обеих сторон, а значит, имеет глобальный максимум.
Корни уравнения четвёртой степени связаны с коэффициентами следующим образом:
История
Уравнения четвёртой степени впервые были рассмотрены древнеиндийскими математиками между IV в. до н. э. и II в. н. э.
Лодовико Феррари приписывается получение решения уравнения четвёртой степени в 1540 году, но его работа опиралась на решение кубического уравнения, которого у него не было, поэтому сразу это решение не было опубликовано,[1] а было опубликовано только в 1545 вместе с решением кубического уравнения наставника Феррари — Джероламо Кардано в книге «Великое искусство»[2].
То, что это наибольшая степень уравнения, для которого можно указать общую формулу решения, было доказано в теореме Абеля — Руффини в 1824.
Записки, оставленные Галуа,
позже привели к элегантной теории корней многочленов, одним из результатов которой была эта теорема[3].
Решение уравнения четвёртой степени вида может быть найдено по методу Феррари.
Если — произвольный корень кубического уравнения
(резольвенты основного уравнения), то четыре корня исходного уравнения находятся как корни двух квадратных уравнений
где подкоренное выражение в правой части является полным квадратом.
Биквадратное уравнение
Биквадратное уравнение[4] — алгебраическое уравнение четвёртой степени вида , где — заданные комплексные числа и . Иначе говоря, это уравнение четвёртой степени, у которого второй и четвёртый коэффициенты равны нулю. Подстановкой оно сводится к квадратному уравнению относительно .
Четыре его корня находятся по формуле
Возвратные уравнения четвёртой степени
Возвратное уравнение четвёртой степени является также относительно легко решаемым: для такого, что , решение находится приведением к виду:
,
После замены ищется решение квадратного уравнения , а затем — квадратного уравнения .