Теорема Эрдёша — Галлаи (критерий Эрдёша — Галлаи) — утверждение в теории графов, задающее условие, при котором конечной последовательности натуральных чисел можно сопоставить степени вершин некоторого графа.
Такие последовательности чисел называются графическими. Теорема доказана венгерскими математиками Палом Эрдёшем и Тибором Галлаи (венг.Gallai Tibor)[1] в 1960 году.
Для формулировки утверждения вводятся следующие определения:
правильная последовательность — последовательность натуральных чисел длины , удовлетворяющая следующим условиям:
,
— чётное число;
графическая последовательность чисел — последовательность целых неотрицательных чисел такая, что существует граф, последовательность степеней вершин которого совпадает с ней.
Теорема утверждает, что правильная последовательность является графической тогда и только тогда, когда для каждого , , верно неравенство:
↑Hakimi, S. L. (1962), "On realizability of a set of integers as degrees of the vertices of a linear graph. I", Journal of the Society for Industrial and Applied Mathematics, 10: 496—506, MR0148049
Литература
Лекции по теории графов / В. А. Емеличев, О. И. Мельников, В. И. Сарванов, Р. И. Тышкевич. — М.: Наука, 1990.