Радикал идеала

В коммутативной алгебре радикал идеала I — это идеал, образованный всеми элементами x такими, что некоторая степень x принадлежит I. Радикальный идеал — это идеал, совпадающий со своим собственным радикалом.

Определение

Радикал идеала I в коммутативном кольце R, обозначаемый , определяется как

Интуитивно, для получения радикала идеала нужно взять корни всех возможных степеней из его элементов. Эквивалентное определение радикала идеала I — это прообраз нильрадикала при отображении факторизации. Это также доказывает, что является идеалом.

Примеры

  • В кольце целых чисел радикал главного идеала  — это идеал, порождённый произведением всех простых делителей .
  • Радикал примарного идеала прост. Если радикал идеала максимален, то этот идеал примарен (если же радикал прост, то идеал не обязательно примарен).
  • В любом коммутативном кольце для простого идеала [1]. В частности, каждый простой идеал радикален.

Свойства

  • . Более того,  — это наименьший радикальный идеал, содержащий I.
  •  — это пересечение всех простых идеалов, содержащих I. В частности, нильрадикал — это пересечение всех простых идеалов.
  • Идеал является радикальным тогда и только тогда, когда факторкольцо по нему не содержит нетривиальных нильпотентов.

Приложения

Основная мотивация для изучения радикалов — это их появление в знаменитой теореме Гильберта о нулях из коммутативной алгебры. Наиболее простая формулировка этой теоремы имеет следующий вид: для любого алгебраически замкнутого поля и любого конечнопорождённого идеала в кольце многочленов от переменных над полем верно следующее равенство:

где

и

Примечания

  1. Атья и Макдональд, 2003, Предложение 4.2.

Литература

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!