Прыгающий мяч

Прыгающий мяч. Движение не совсем параболическое из-за сопротивления воздуха.

Физика прыгающего мяча касается физического поведения прыгающего мяча, в частности его движения до, во время и после удара о поверхность другого тела. Некоторые аспекты поведения прыгающего мяча служат введением в механику на курсах физики в средней школе или бакалавриате. Однако точное моделирование поведения сложно и представляет интерес для спортивной инженерии.

Движение мяча обычно описывается движением снаряда (на которое могут влиять гравитация, сопротивление, эффект Магнуса и плавучесть), тогда как его воздействие обычно характеризуется коэффициентом восстановления (на который может влиять природа шара, характер ударяющей поверхности, скорость удара, вращение и местные условия, такие как температура и давление). Чтобы обеспечить честную игру, многие спортивные руководящие органы устанавливают ограничения на упругость мяча и запрещают изменение его аэродинамических свойств. Отскок мячей был характерной чертой таких древних видов спорта, как мезрамериканская игра в мяч[1].

Силы во время полёта и влияние на движение

Силы, действующие на вращающийся шар во время его полёта, — это сила гравитации (FG), сила сопротивления воздуха (FD), сила Магнуса (FM) и плавучесть (FB).

Движение прыгающего мяча аналогично полёту снаряда[2][3]. На настоящий шар действует множество сил, а именно сила гравитации (FG), лобовое сопротивление из-за сопротивления воздуха (FD), сила Магнуса из-за вращения мяча (FM) и сила плавучести (FB). В общем случае для анализа движения мяча необходимо использовать второй закон Ньютона с учётом всех сил:

где m — масса мяча. Здесь вектора a, v, r обозначают ускорение, скорость и положение мяча в момент времени t.

Сила тяжести

Траектория мяча, отскакивающего под углом 70° после удара. Чёрный объект не испытывает никакого сопротивления и движется по параболе, на голубой объект действует закон Стокса, на зелёный объект — закон вязкости Ньютона.

Сила гравитации направлена вниз и равна[4]

где m — масса мяча, а g — ускорение свободного падения, которое на Земле колеблется в пределах 9,764 и 9,834 м/с2[5]. Поскольку другие силы обычно малы, то движение тела часто идеализируется как происходящее только под действием силы тяжести. Если на мяч действует только сила тяжести, то механическая энергия сохранится во время его полёта. В этом идеализированном случае уравнения движения имеют вид

где a, v и r — ускорение, скорость и положение мяча, а v0 и r0 — начальная скорость и положение мяча соответственно.

В координатной записи, если мяч отскакивает под углом θ к земле, движение по осям x и y (представляющее горизонтальное и вертикальное движение соответственно) описывается формулой[6]

ось X ось Y

Из уравнений следует, что максимальная высота (H), дальность (R) и время полёта (T) мяча, отскакивающего от плоской поверхности, определяются выражениями[2][6]

Дальнейшие уточнения движения мяча можно внести, приняв во внимание сопротивление воздуха (и связанные с ним эффекты, такие как сопротивление и ветер), эффект Магнуса и плавучесть. Поскольку более лёгкие мячи ускоряются быстрее, то эти силы оказывают большее влияние на их движение.

Сопротивление

Обтекание шара воздухом может быть как ламинарным, так и турбулентным в зависимости от числа Рейнольдса (Re), определяемого как:

где ρ — плотность воздуха, μ — динамическая вязкость воздуха, D — диаметр мяча, а v — скорость мяча в воздухе. При температуре 20 degC, ρ = 1,2 кг/м3 и μ = 1,8⋅10−5 Па·с[7].

Если число Рейнольдса очень мало (Re < 1), и сила сопротивления движению мяча описывается законом Стокса[8]:

где r — радиус шара. Эта сила направлена против движения мяча (в направлении ). Однако для большинства спортивных мячей число Рейнольдса будет находиться в диапазоне от 104 до 105, и закон Стокса неприменим[9]. При этих более высоких значениях числа Рейнольдса сила сопротивления мячу описывается формулой лобового аэродинамического сопротивления[10]:

где Cd — коэффициент сопротивления формы, а A — площадь поперечного сечения мяча.

Сопротивление приведёт к тому, что мяч потеряет механическую энергию во время полёта, а также уменьшит его дальность и высоту, а боковой ветер отклонит его от первоначального пути. Оба эффекта должны учитываться игроками в таких видах спорта, как гольф.

Эффект Магнуса

Сила Магнуса, действующая на мяч при обратном вращении. Закрученные линии потока представляют собой турбулентный след. Воздушный поток отклоняется в сторону вращения.

Вращение мяча влияет на его траекторию посредством эффекта Магнуса. Согласно теореме Кутты — Жуковского, для вращающейся сферы с невязким потоком воздуха сила Магнуса равна[11]

где r — радиус шара, ω — угловая скорость (или скорость вращения) мяча, ρ — плотность воздуха и v — скорость мяча относительно воздуха. Эта сила направлена перпендикулярно движению и перпендикулярно оси вращения (в направлении ). Сила направлена вверх при обратном вращении и вниз при вращении вверх. В действительности поток никогда не бывает невязким, и подъёмный эффект Магнуса лучше описывается формулой[12]

где ρ — плотность воздуха, CL — коэффициент подъёмной силы, A — площадь поперечного сечения шара, а v — скорость шара относительно воздуха. Коэффициент подъемной силы представляет собой сложный параметр, который зависит, среди прочего, от отношения /v, числа Рейнольдса и шероховатости поверхности[12]. В определённых условиях коэффициент подъёмной силы может быть даже отрицательным, изменяя направление силы Магнуса (обратный эффект Магнуса)[4][13][14].

В таких видах спорта, как теннис или волейбол, игрок может использовать эффект Магнуса для управления траекторией мяча (например, с помощью топ-спина или обратного вращения) во время полёта. В гольфе этот эффект отвечает за нарезку и зацеп, которые обычно наносят ущерб игроку в гольф, но также помогают увеличить дальность удара и других ударов[15][16]. В бейсболе питчеры используют этот эффект для создания кручёных мячей и других специальных полей[17].

Фальсификация мяча часто является незаконной и часто оказывается в центре споров по крикету, таких как спор между Англией и Пакистаном в августе 2006 года[18]. В бейсболе термин «спитбол» означает незаконное покрытие мяча слюной или другими веществами с целью изменения аэродинамики мяча[19].

Плавучесть

Любой объект, погружённый в жидкость, например, в воду или воздух, будет испытывать подъёмную силу вверх[20]. Согласно принципу Архимеда, эта выталкивающая сила равна весу жидкости, вытесненной предметом. В случае сферы, полностью погружённой в среду, эта сила равна

Выталкивающая сила обычно мала по сравнению с сопротивлением и силами Магнуса, и ею часто можно пренебречь. Однако в случае с баскетбольным мячом выталкивающая сила может составлять около 1,5 % веса мяча[20]. Поскольку сила плавучести направлена вверх, она будет способствовать увеличению дальности и высоты полёта мяча.

Удар

Сжатие (A→B) и декомпрессия (B→C) мяча, ударяющегося о поверхность. Сила удара обычно пропорциональна расстоянию сжатия, по крайней мере, при небольших сжатиях, и её можно моделировать по закону Гука для пружины[21][22].
Внешние видеофайлы
Florian Korn. Ball bouncing in slow motion: Rubber ball. YouTube (2013).

Когда мяч ударяется о поверхность, поверхность деформируется и вибрирует, как и мяч, создавая звук и тепло, а мяч теряет кинетическую энергию. Кроме того, удар может придать шару некоторое вращение, преобразуя часть его поступательной кинетической энергии в кинетическую энергию вращения. Эти потери энергии обычно характеризуются (косвенно) через коэффициент восстановления (или COR, обозначаемый e)[23][note 1]:

где vf и vi — конечная и начальная скорости мяча, а uf и ui — конечная и начальная скорости ударяющейся поверхности соответственно. В конкретном случае, когда мяч ударяется о неподвижную поверхность, COR упрощается до

Таким образом, для мяча, упавшего на пол, COR будет варьироваться от 0 (нет отскока, полная потеря энергии) до 1 (идеальный отскок, отсутствие потери энергии). Значение COR ниже 0 или выше 1 теоретически возможно, но будет указывать на то, что мяч прошел через поверхность (e < 0) или что поверхность не была «расслаблена», когда мяч ударился о неё (e > 1), как в случай падения мяча на подпружиненную платформу.

Чтобы проанализировать вертикальные и горизонтальные компоненты движения, COR иногда разделяют на проекции: нормальный COR (ey) и тангенциальный COR (ex), определяемые как[24]

где r и ω — радиус и угловую скорость мяча, а R и Ω — радиус и угловую скорость поверхности удара (например, бейсбольной биты). В частности , rω — это тангенциальная скорость поверхности шара, а  — это тангенциальная скорость соударяющейся поверхности. Это особенно важно, когда мяч ударяется о поверхность под косым углом или когда задействовано вращение.

При прямом падении на землю без вращения, когда на мяч действует только сила тяжести, COR можно связать с несколькими другими величинами следующим образом[22][25]:

Здесь K и U обозначают кинетическую и потенциальную энергию мяча, H — максимальную высоту мяча, а T — время полета мяча. Индексы «i» и «f» относятся к начальному (до удара) и конечному (после удара) состояниям мяча. Аналогичным образом, потерю энергии при ударе можно связать с COR соотношением

На COR мяча могут влиять несколько факторов, в основном

  • характер воздействующей поверхности (например, трава, бетон, проволочная сетка)[25][26]
  • материал мяча (например, кожа, резина, пластик)[22]
  • давление внутри шара (если полый)[22]
  • величина вращения, возникающая в мяче при ударе[27]
  • скорость удара[21][22][26][28].

Внешние условия, такие как температура, могут изменить свойства ударяющейся поверхности или мяча, делая их более гибкими или более жёсткими. Это, в свою очередь, повлияет на COR[22]. В общем, мяч будет деформироваться сильнее при более высоких скоростях удара и, соответственно, потеряет больше своей энергии, уменьшая свой COR[22][28].

Вращение и угол удара

Силы, действующие на вращающийся мяч во время удара, — это сила тяжести, нормальная сила и сила трения (которая обычно имеет как «поступательную», так и «вращательную» составляющую). Если поверхность наклонена, то сила тяжести будет находиться под углом к поверхности, в то время как другие силы останутся перпендикулярными или параллельными поверхности.
Внешние видеофайлы
BiomechanicsMMU. Golf impacts - Slow motion video. YouTube (2008).

При ударе о землю некоторая часть поступательной кинетической энергии может быть преобразована в кинетическую энергию вращения и наоборот, в зависимости от угла удара мяча и угловой скорости. Если при ударе мяч движется горизонтально, трение будет иметь «поступательную» составляющую в направлении, противоположном движению мяча. На рисунке мяч движется вправо, и, следовательно, у него будет поступательная составляющая трения, толкающая мяч влево. Кроме того, если мяч при ударе вращается, трение будет иметь «вращательную» составляющую в направлении, противоположном вращению мяча. На рисунке мяч вращается по часовой стрелке, а точка удара о землю перемещается влево относительно центра масс мяча. Таким образом, вращательная составляющая трения толкает мяч вправо. В отличие от нормальной силы и силы тяжести, эти силы трения оказывают на шар крутящий момент и изменяют его угловую скорость (ω)[29][30][31][32].

Могут возникнуть три ситуации[32][33][34]:

  1. Если мяч движется вперед с обратным вращением, то поступательное и вращательное трение будут действовать в одних и тех же направлениях. Угловая скорость мяча после удара уменьшится, как и его горизонтальная скорость, и мяч поднимется вверх, возможно, даже превысив свою первоначальную высоту. Также возможно, что мяч начнёт вращаться в противоположном направлении и даже отскочит назад.
  2. Если мяч движется вперед с топ-спином, действия поступательного и вращательного трения будут направлены в противоположные стороны. Что именно произойдёт, зависит от того, какой из двух компонентов доминирует.
    1. Если мяч вращается гораздо быстрее, чем двигался поступательно, то трение вращения будет преобладать. Угловая скорость мяча после удара уменьшится, но его горизонтальная скорость увеличится. Мяч будет двигаться вперёд, но не превысит своей первоначальной высоты и продолжит вращаться в том же направлении.
    2. Если мяч движется поступательно гораздо быстрее, чем вращался, то трение, связанное с поступательным движением будет преобладать. Угловая скорость мяча после удара увеличится, но его горизонтальная скорость уменьшится. Мяч не превысит свою первоначальную высоту и продолжит вращаться в том же направлении.

Если поверхность наклонена на некоторую величину θ, вся диаграмма повернётся на θ, но сила гравитации останется направленной вниз (образуя угол θ с поверхностью). Тогда гравитация будет иметь компоненту, параллельную поверхности, который будет способствовать трению и, таким образом, способствовать вращению[32].

В видах спорта с ракетками, таких как настольный теннис или ракетбол, опытные игроки будут использовать вращение (включая боковое вращение), чтобы внезапно изменить направление мяча, когда он ударяется о поверхность, например, о землю или ракетку противника. Точно так же в крикете существуют различные методы подачи с вращением, которые могут привести к значительному отклонению мяча от поля.

Несферические мячи

Силы, действующие на футбольный мяч или мяч для регби при ударе, — это сила тяжести, нормальная сила и сила трения. Трение обычно имеет «продольную» составляющую из-за скорости мяча и «кувыркающегося» вращения, а также «боковую» составляющую из-за вращения мяча «по оси», вызванного броском.

Отскок мяча овальной формы (например, тех, которые используются в футболе с сеткой или регби) в целом гораздо менее предсказуем, чем отскок сферического мяча. В зависимости от положения мяча при ударе нормальная сила может действовать впереди или позади центра массы мяча, а трение о землю будет зависеть от выравнивания мяча, а также от его вращения, вращения и скорости удара. Когда силы, действующие относительно центра масс мяча, изменяются по мере того, как мяч катится по земле, и все силы могут оказывать на мяч крутящий момент, включая нормальную силу и силу тяжести. Это может привести к отскоку мяча вперёд, назад или в сторону. Поскольку можно передать некоторую часть кинетической энергии вращения в кинетическую энергию поступательного движения, возможно даже, что COR будет больше 1 или скорость движения мяча вперёд увеличится при ударе[35].

Несколько сложенных шаров

Внешние видеофайлы
Physics Girl. Stacked Ball Drop. YouTube (2015).

Популярная демонстрация включает в себя отскок нескольких сложенных мячей. Если теннисный мяч положить на баскетбольный мяч и оба мяча уронить одновременно, теннисный мяч подпрыгнет намного выше, чем если бы он упал сам по себе, даже превысив свою первоначальную высоту выброса[36][37] . Результат удивителен, поскольку он, очевидно, нарушает закон сохранения энергии[38]. Однако при ближайшем рассмотрении баскетбольный мяч не подпрыгивает так высоко, как если бы теннисный мяч не находился на нём сверху и не передал часть своей энергии теннисному мячу, подталкивая его на большую высоту[36].

Обычное объяснение предполагает рассмотрение двух отдельных ударов: удара баскетбольного мяча об пол и удара баскетбольного мяча о теннисный мяч[36][37]. Предполагая совершенно упругие столкновения, баскетбольный мяч ударяется об пол при скорости 1 м/с и восстановится до скорости 1 м/с. Теннисный мяч летит со скоростью 1 м/с тогда будет иметь относительную скорость удара 2 м/с, что означает, что он отскочит со скоростью 2 м/с относительно баскетбольного мяча, или 3 м/с относительно пола и утроит скорость отскока по сравнению со скоростью удара о пол. Это означает, что мяч отскочит на высоту, в девять раз превышающую его первоначальную высоту[note 2]. В действительности из-за неупругих столкновений теннисный мяч увеличит свою скорость и высоту отскока в меньшее число раз, но всё равно будет подпрыгивать быстрее и выше, чем сам по себе[37].

Хотя предположения об отдельных ударах на самом деле неверны (шары остаются в тесном контакте друг с другом на протяжении большей части удара), эта модель, тем не менее, хорошо воспроизводит экспериментальные результаты[37] и часто используется для понимания более сложных явлений, таких как коллапс ядра сверхновых[36] или при гравитационных манёврах[39].

Спортивный регламент

Спортивные федерации некоторых видов спорта регулируют упругость мяча различными способами: некоторые прямыми, некоторые косвенными.

Давление американского футбольного мяча было в центре спора о дефлатгате[50][51]. В некоторых видах спорта прыгающие свойства мячей напрямую не регулируются, а вместо этого указываются метод конструкции. В бейсболе появление мяча на основе пробки помогло положить конец эпохе мёртвого мяча и положить начало эпохе живого мяча[52][53].

Примечания

Комментарии

  1. Здесь v и u — это не только величина скоростей, но и их направление (знак).
  2. Поскольку сохранение механической энергии подразумевает , тогда пропорциональна .
  3. 1 2 3 Рассчитано с использованием и (если применимо) диаметр шара. Расчёт предполагает, что сопротивление воздуха незначительно.

Источники

  1. The Sport of Life and Death: The Mesoamerican Ballgame. — Thames & Hudson, 2001. — ISBN 0-500-05108-9.
  2. 1 2 Brancazio, P. J. (1985). "Trajectory of a fly ball". The Physics Teacher. 23 (1): 20—23. Bibcode:1985PhTea..23...20B. doi:10.1119/1.2341702.
  3. Walker, J. Fundamentals of Physics. — 10th Extended. — John Wiley & Sons, 2014. — ISBN 978-1-118-23072-5.
  4. 1 2 Bush, J. W. M. The aerodynamics of the beautiful game // Sports Physics. — Les Éditions de l'École Polytechnique, 2013. — P. 171. — ISBN 978-2-7302-1615-9.
  5. Hirt, C.; Claessens, S.; Fecher, T.; Kuhn, M.; Pail, R.; Rexer, M. (2013). "New ultrahigh-resolution picture of Earth's gravity field". Geophysical Research Letters. 40 (16): 4279—4283. Bibcode:2013GeoRL..40.4279H. doi:10.1002/grl.50838.
  6. 1 2 Nave, R. Trajectories. HyperPhysics. Дата обращения: 27 января 2017. Архивировано 18 июля 2019 года.
  7. Dry air properties. The Engineering Toolbox. Дата обращения: 11 февраля 2017. Архивировано 25 марта 2017 года.
  8. Southard, J. Chapter 3: Flow past a sphere II: Stoke's law, the Bernoulli equation, turbulence, boundary layers, flow separation // Special Topics: An Introduction to Fluid Motions, Sediment Transport, and Current-generated Sedimentary Structures. — MIT, Fall 2006. — P. 35–82.
  9. Metha, R. D. Sports ball aerodynamics // Sport Aerodynamics. — Springer, 2008. — Vol. 506. — P. 229–331. — ISBN 978-3-211-89296-1. — doi:10.1007/978-3-211-89297-8_12.
  10. Drag of a sphere. NASA. Дата обращения: 21 сентября 2023. Архивировано 28 мая 2019 года.
  11. Ideal lift of a spinning ball. NASA. Дата обращения: 2 февраля 2017. Архивировано 4 сентября 2018 года.
  12. 1 2 Nathan, A. M. (2008). "The effect of spin on the flight of a baseball" (PDF). American Journal of Physics. 76 (2): 119—124. arXiv:physics/0605041. Bibcode:2008AmJPh..76..119N. doi:10.1119/1.2805242. S2CID 15494386. Архивировано (PDF) 26 мая 2019. Дата обращения: 21 сентября 2023.
  13. Kim, J.; Park, H.; Choi, H.; Yoo, J. Y. (2011). "Inverse Magnus effect on a rotating sphere" (PDF). 64th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society. Bibcode:2011APS..DFD.A7008K. Архивировано (PDF) 1 августа 2023. Дата обращения: 21 сентября 2023.
  14. Kim, J.; Choi, H.; Park, H.; Yoo, J. Y. (2014). "Inverse Magnus effect on a rotating sphere: When and why". Journal of Fluid Mechanics. 754: R2. Bibcode:2014JFM...754R...2K. doi:10.1017/jfm.2014.428. S2CID 122453684.
  15. Magnus effect. HumanKinetics.com (11 ноября 2008). Дата обращения: 27 января 2017. Архивировано из оригинала 28 декабря 2018 года.
  16. DeForest, C. Why are golf balls dimpled? The Original Usenet Physics FAQ (1997). Дата обращения: 27 января 2017. Архивировано из оригинала 23 июля 2019 года.
  17. Clanet, C. (2015). "Sports ballistics" (PDF). Annual Review of Fluid Mechanics. 47: 455—478. Bibcode:2015AnRFM..47..455C. doi:10.1146/annurev-fluid-010313-141255. Архивировано (PDF) 29 марта 2017. Дата обращения: 21 сентября 2023.
  18. Inzamam charged by ICC. The Guardian (21 августа 2006). Дата обращения: 28 января 2017. Архивировано 18 ноября 2018 года.
  19. Okrent, D. Baseball anecdotes / D. Okrent, S. Wulf. — Oxford University Press, 1989. — P. 89. — ISBN 978-0-19-504396-9.
  20. 1 2 Post, S. Applied and computational fluid mechanics. — Jones and Bartlett Publishers, 2010. — P. 280–282. — ISBN 978-1-934015-47-6.
  21. 1 2 Cross, R. (1999). "The bounce of a ball" (PDF). American Journal of Physics. 67 (3): 222—227. Bibcode:1999AmJPh..67..222C. doi:10.1119/1.19229. Архивировано (PDF) 23 декабря 2018. Дата обращения: 21 сентября 2023.
  22. 1 2 3 4 5 6 7 Georgallas, A.; Landry, G. (2016). "The coefficient of restitution of pressurized balls: A mechanistic model". Canadian Journal of Physics. 94 (1): 42. Bibcode:2016CaJPh..94...42G. doi:10.1139/cjp-2015-0378. hdl:1807/69855.
  23. Coefficient of restitution. RacquetResearch.com. Дата обращения: 27 января 2017. Архивировано из оригинала 23 ноября 2016 года.
  24. Cross, R.; Nathan, A. M. (2006). "Scattering of a baseball by a bat". American Journal of Physics. 74 (10): 896—904. arXiv:physics/0605040. Bibcode:2006AmJPh..74..896C. doi:10.1119/1.2209246. S2CID 15488042.
  25. 1 2 Haron, A.; Ismail, K. A. (2012). "Coefficient of restitution of sports balls: A normal drop test". IOP Conference Series: Materials Science and Engineering. 36 (1): 012038. Bibcode:2012MS&E...36a2038H. doi:10.1088/1757-899X/36/1/012038.
  26. 1 2 Cross, R. (2000). "The coefficient of restitution for collisions of happy balls, unhappy balls, and tennis balls" (PDF). American Journal of Physics. 68 (11): 1025—1031. Bibcode:2000AmJPh..68.1025C. doi:10.1119/1.1285945. Архивировано (PDF) 22 декабря 2018. Дата обращения: 21 сентября 2023.
  27. Cross, R. (2002). "Grip-slip behavior of a bouncing ball" (PDF). American Journal of Physics. 70 (11): 1093—1102. Bibcode:2002AmJPh..70.1093C. doi:10.1119/1.1507792. Архивировано (PDF) 22 декабря 2018. Дата обращения: 21 сентября 2023.
  28. 1 2 Zhang, X.; Vu-Quoc, L. (2002). "Modeling the dependence of the coefficient of restitution on the impact velocity in elasto-plastic collisions". International Journal of Impact Engineering. 27 (3): 317—341. doi:10.1016/S0734-743X(01)00052-5.
  29. Hesser-Knoll, M. Ball spin during bounce. The Physics of Tennis. University of Alaska Fairbanks (2014). Дата обращения: 1 февраля 2017. Архивировано 2 января 2019 года.
  30. Lindsey, C. Follow the bouncing ball. Tennis Industry (апрель 2004). Дата обращения: 1 февраля 2017. Архивировано 20 ноября 2018 года.
  31. Allen, T.; Haake, S.; Goodwill, S. (2010). "Effect of friction on tennis ball impacts". Proceedings of the Institution of Mechanical Engineers, Part P. 224 (3): 229—236. doi:10.1243/17543371JSET66.
  32. 1 2 3 Cross, R. (2005). "Bounce of a spinning ball near normal incidence" (PDF). American Journal of Physics. 73 (10): 914—920. Bibcode:2005AmJPh..73..914C. doi:10.1119/1.2008299. Архивировано (PDF) 21 сентября 2018. Дата обращения: 21 сентября 2023.
  33. Allen, T. (2012). "The ball's in your court" (PDF). ANSYS Advantage (Web exclusive). Архивировано из оригинала (PDF) 5 февраля 2017.
  34. Jafri, S. M. M. (2004). Modeling of impact dynamics of a tennis ball with a flat surface (PDF) (Thesis). Texas A&M University. hdl:1969.1/2441. Архивировано (PDF) 22 сентября 2017. Дата обращения: 21 сентября 2023.
  35. Cross, R. (2011). "Bounce of an oval shaped football" (PDF). Sports Technology. 3 (3): 168—180. doi:10.1080/19346182.2011.564283. S2CID 108409393. Архивировано (PDF) 24 марта 2019. Дата обращения: 21 сентября 2023.
  36. 1 2 3 4 Huebner, J. S.; Smith, T. L. (1992). "Multi-ball collisions". The Physics Teacher. 30 (1): 46. Bibcode:1992PhTea..30...46H. doi:10.1119/1.2343467. Архивировано (PDF) 26 января 2020. Дата обращения: 21 сентября 2023.
  37. 1 2 3 4 Cross, R. (2007). "Vertical bounce of two vertically aligned balls" (PDF). American Journal of Physics. 75 (11): 1009—1016. Bibcode:2007AmJPh..75.1009C. doi:10.1119/1.2772286. Архивировано (PDF) 22 марта 2019. Дата обращения: 21 сентября 2023.
  38. Harter, W. G. (1971). "Velocity amplification in collision experiments involving superballs" (PDF). American Journal of Physics. 39 (6): 656—663. Bibcode:1971AmJPh..39..656H. doi:10.1119/1.1986253. Архивировано (PDF) 10 ноября 2016. Дата обращения: 21 сентября 2023.
  39. Nave, R. Double ball drop. HyperPhysics. Дата обращения: 28 января 2017. Архивировано 5 июня 2019 года.
  40. Laws of Australian Football 2017. — AFL, 2017. — P. 15. Архивная копия от 5 марта 2019 на Wayback Machine
  41. Official Basketball Rules 2014 Basketball Equipment. — FIBA, 2014. — P. 12. Архивная копия от 15 февраля 2017 на Wayback Machine
  42. Laws of the Game: 2014–15. — FIFA, 2014. — P. 15. Архивная копия от 15 февраля 2017 на Wayback Machine
  43. Official Volleyball Rules: 2017–2020. — FIVB, 2016. — P. 16. Архивная копия от 12 апреля 2019 на Wayback Machine
  44. Official Beach Volleyball Rules: 2017–2020. — FIVB, 2017. — P. 15. Архивная копия от 27 августа 2018 на Wayback Machine
  45. ITF Approved Tennis Balls, Classified Surfaces & Recognized Courts. — ITF, 2016. — P. 4–5. Архивная копия от 26 февраля 2017 на Wayback Machine
  46. The International Table Tennis Federation Handbook. — ITTF, 2017. — P. 24. Архивная копия от 24 апреля 2018 на Wayback Machine
  47. Official Rules of the National Basketball Association: 2013–2014. — NBA, 2013. — P. 10. Архивная копия от 20 марта 2019 на Wayback Machine
  48. Official Playing Rules of the National Football League. — NFL, 2016. — P. 3. Архивная копия от 18 сентября 2017 на Wayback Machine
  49. Rubenstein, L. (2002-05-11). "Getting to COR of game, finally". The Globe and Mail. Архивировано 17 декабря 2019. Дата обращения: 27 января 2017.
  50. Botelho, G.; Castillo, M. 'Deflategate:' 4-game suspension for Tom Brady. CNN (11 мая 2015). Дата обращения: 27 января 2017. Архивировано 5 февраля 2017 года.
  51. Well, Jr., T. V. Investigative Report Concerning Footballs Used During the AFC Championship Game on January 18, 2015 / T. V. Well, Jr., B. S. Karp, L. L. Reisner. — Paul, Weiss, Rifkind, Wharton & Garrison LLP, 2015. Архивная копия от 7 ноября 2019 на Wayback Machine
  52. "Evolution of the ball" . Baseball Digest: 67. July 1963.
  53. Sowell, T. Dead ball vs lively ball // The Thomas Sowell Reader. — Basic Books, 2011. — ISBN 9780465022502.

Литература

Read other articles:

American art rock band This article is about the art rock band. For other uses, see Resident (disambiguation). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may be written from a fan's point of view, rather than a neutral point of view. Please clean it up to conform to a higher standard of quality, and to make it neutral in tone. (November 2017) (Learn how and when to remov...

 

Saint-Hyacinthe Circonscription électorale provinciale du CanadaDonnées clés Création 1867 Localisation Province Québec Superficie 624,15 km2 Représentation politique Députée Chantal Soucy Parti politique Coalition avenir Québec Démographie Population 75 485 hab. (2016[1]) Électeurs 58 227 électeurs (2017[2]) Densité 120,94 hab./km2 (2016[1]) modifier Saint-Hyacinthe est une circonscription électorale provinciale située autour de la ville de Saint-...

 

AupsZ'Aup / Z'Aups Entidad subnacional Escudo AupsZ'Aup / Z'AupsLocalización de AupsZ'Aup / Z'Aups en Francia Coordenadas 43°37′42″N 6°13′29″E / 43.628333333333, 6.2247222222222Entidad Comuna de Francia • País  Francia • Región Provenza-Alpes-Costa Azul • Departamento Var • Distrito Distrito de Brignoles • Cantón Cantón de AupsAlcalde Antonio Faure(2008 - 2014)Superficie   • Total 64.15 km²Altitud   ...

Season of television series Rurouni KenshinSeason 3Cover of the DVD compilation released by Media BlastersCountry of originJapanNo. of episodes33ReleaseOriginal networkFuji TelevisionOriginal releaseOctober 14, 1997 (1997-10-14) –September 8, 1998 (1998-09-08)Season chronology← PreviousSeason 2 List of episodes The following is a list of episodes 63–95 of the anime series Rurouni Kenshin, based on the manga series of the same name by Nobuhiro Watsuki. They aired in J...

 

El Quinteto con clarinete en la mayor, K. 581, o Quinteto Stadler es una obra del compositor Wolfgang Amadeus Mozart para un clarinete, dos violines, una viola y un violonchelo. Fue compuesto originalmente para clarinete di basseto y dedicado a su amigo el clarinetista Anton Stadler para ser interpretado por él mismo. Es habitual utilizar para su interpretación un clarinete en la. Es el único quinteto con este instrumento compuesto por Mozart. Terminó su composición el 29 de septiembre d...

 

This article is part of a series onCorporate law By jurisdiction Anguilla Australia BVI Canada Cayman Islands India South Africa UK United States Vietnam European Union France Germany General corporate forms Company Conglomerate Cooperative Corporation Holding company Joint-stock Partnership General Limited Limited liability Private limited Shell corporation Sole proprietorship Corporate formsby jurisdiction European Union Societas (SE) Societas cooperativa (SCE) Societas privata (SPE) S...

سبي بابلمعلومات عامةالبداية 16 مارس 597 ق.م النهاية 538 ق.م المنطقة بلاد بابل وصفها المصدر  القائمة ... كتاب العائلة الشمالي قاموس بروكهاوس وإفرون الموسوعي موسوعة ناتال قاموس بروكهاوس وإفرون الموسوعي الصغير الموسوعة السوفيتية الكبرى الموسوعة البريطانية نسخة سنة 1911 تعديل - تع

 

マカオ国際空港澳門國際機場Aeroporto Internacional de Macau Macau International Airport 上空から見たマカオ国際空港。左下のタイパ島にターミナルビルや駐機場があり、滑走路のある人工島との間は2本の橋で結ばれている IATA: MFM - ICAO: VMMC概要国・地域 マカオ所在地 マカオ嘉模堂区母都市 マカオ種類 公共運営者 マカオ国際機場管理公司拠点航空会社 マカオ航空標高 6 m (20 ft)座標 ...

 

Swedish company producing preserved fish products Abba Seafood ABTypeJoint-stock companyFounded1838FounderChristian Gerhard AmelnHeadquartersGothenburg, SwedenKey peopleJohan Sundelin (CEO)RevenueSEK 1.266 billion (2011)[1]Total assets1.158 billionTotal equity531.152 USDOwnerOrkla ASANumber of employeesabout 391 (2012)[1]ParentEiser CompanyWebsitewww.abba.se Canned fish produced by Abba Seafood Abba Seafood AB, formerly Abba AB, with head offices in Gothenburg, Sweden, is a co...

Australian superior federal court Federal Court of AustraliaIn Melbourne, the Federal Court is housed with other federal courts such as the High Court and the Federal Circuit Court of Australia in the Owen Dixon Commonwealth Law Courts Building on the corner of La Trobe Street and William Street[1]33°52′8″S 151°12′42″E / 33.86889°S 151.21167°E / -33.86889; 151.21167Established1976Coordinates33°52′8″S 151°12′42″E / 33.86889...

 

American lawyer, prosecutor and law professor Paul ButlerBornPaul Delano Butler (1961-01-15) January 15, 1961 (age 62)Chicago, Illinois, U.S.NationalityAmericanEducationYale University (BA)Harvard Law School (JD)Scientific careerFieldsCriminal lawInstitutionsGeorgetown University Law Center Paul Delano Butler (born January 15, 1961)[1] is an American lawyer, former prosecutor, and current law professor of Georgetown University Law Center. He is a leading criminal law scholar, par...

 

For other uses, see Shalom (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Shalom TV channel – news · newspapers · books · scholar · JSTOR (February 2016) (Learn how and when to remove this template message) Television channel Shalom TV IndiaCountryIndia, Asia, Europe, United StatesBro...

Dial from a transistorised mains operated Calstan radio, circa 1960s Call signs in Australia are allocated by the Australian Communications and Media Authority and are unique for each broadcast station. The use of callsigns on-air in both radio and television in Australia is optional, so many stations used other on-air identifications. Australian broadcast stations officially have the prefix VL- and originally all callsigns used that format, but since Australia has no nearby neighbours, this ...

 

Vladimír Hurban Vladimírov Vladimír Hurban Vladimírov all'anagrafe Vladimír Konštantín Hurban (Stara Pazova, 4 agosto 1884 – Stara Pazova, 28 settembre 1950) è stato un drammaturgo, scrittore e pastore protestante slovacco, appartenente alla minoranza slovacca della Vojvodina. Considerato una delle maggiori personalità artistiche della Vojvodina, scrisse anche poesie, racconti e libretti per l'operetta. I suoi lavori teatrali ritraggono la vita quotidiana del villaggio. Indice 1 Bi...

 

1993 compilation album by Toshinobu KubotaThe Baddest IICompilation album by Toshinobu KubotaReleasedSeptember 22, 1993Recorded1990-1992Genrepop, reggae, funk, Go go, R&BLength76:43LabelSony Music Entertainment JapanToshinobu Kubota chronology Neptune(1992) The Baddest II(1993) Bumpin' Voyage(1995) The Baddest II is a compilation album of Japanese singer Toshinobu Kubota. The album released on September 22, 1993, summing up various singles from Kubota. The album peaked at number o...

Polish writer and historian Edward KopówkaBorn12 October 1963 (1963-10-12) (age 60)NationalityPolishEducationPodlasie AcademyOccupationHistorianKnown forHolocaust research Edward Kopówka (born 12 October 1963) is a Polish writer and historian, graduate of the Faculty of History at the Podlasie Academy in Siedlce, political and social activist known for his active participation in the democratic process beginning with the so-called Second circulation publishing of delegalized ...

 

Andrij Ševčenko Ševčenko u 2012. godini. Država Ukrajina Osobni podatci Puno ime Andrij Mykolajovyč Ševčenko Nadimak Ševa Rođenje 29. rujna 1976.Kijev Visina 183 cm Klub Trenutačni klub Ukrajina Pozicija trener (kao igrač napadač) Mlađi uzrasti 1986. – 1994. Dinamo Kijev Igračka karijera* Godina Klub Nast. (gol.) 1994. – 1999.1999. – 2006.2006. – 2008.2008. – 2009.2009. – 2012. Dinamo Kijev MilanChelsea → Milan (posudba)Dinamo Kijev 0117 00(60)0208 0(127)0047 000...

 

11th century Queen of Germany For the supposed sister of Sweyn Forkbeard, King of Denmark (died 1002), see Gunhilde. Gunhilda of Denmark13th century portraitQueen consort of GermanyTenure1036 – 18 July 1038Bornc. 1020Died18 July 1038 (aged 17–18)BurialLimburg AbbeySpousesHenry III, Holy Roman EmperorIssueBeatrice I, Abbess of QuedlinburgHouseJelling dynastyFatherCnut the GreatMotherEmma of Normandy Gunhilda of Denmark (c. 1020 – 18 July 1038), was Queen consort of Germany...

William Hanna William Hanna. Jina la kuzaliwa William Denby Bill Hanna Alizaliwa 14 Julai 1910 Alikufa 22 Machi 2001 Nchi Marekani Kazi yake MwanakatuniMtaarishajiMwongozaji William Denby Bill Hanna (14 Julai 1910 – 22 Machi 2001) alikuwa mwundaji wa vikatuni, mwongozaji, mtaarishaji, na mwanzilishi-mshirilki, pamoja na Joseph Barbera, wa Hanna-Barbera studio kutoka nchini Marekani. Studio ya Hanna-Barbera imaetaarisha katuni nyingi tu maarufu, ikiwemo ile ya The Huckleberry Hound Show, Th...

 

  Ortonéctidos TaxonomíaReino: AnimaliaSubreino: Eumetazoa(sin rango) BilateriaProtostomiaSuperfilo: SpiraliaLophotrochozoaFilo: Annelida[1]​Clase: OrthonectidaGiard, 1880Orden: OrthonecteaGiard, 1879Familias Rhopaluridae Pelmatosphaeridae [editar datos en Wikidata] Los ortonéctidos (Orthonectida del griego orthós, “recto” y nectós, “nadar”, “que nada recto”) son organismos considerados un tipo especializado de Mesozoa y se consideran los únicos represen...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!