По́лный граф — простой неориентированный граф, в котором каждая пара различных вершин смежна.[1]По́лный ориенти́рованный граф — ориентированный граф, в котором каждая пара различных вершин соединена парой ребер с противоположными ориентациями.[2]
Принято считать, что теория графов берет свое начало с решения Леонардом Эйлеромзадачи о семи кёнигсбергских мостах, датированного 1736 годом, однако изображения полных графов, вершины которых располагаются в вершинах правильных многоугольников, встречаются ещё в 13 веке, в работе Раймунда Луллия.[3]
Подобные рисунки иногда называют мистическими розами.[4]
Обычно полный граф с вершинами обозначается через . Некоторые источники утверждают, что буква в этом обозначении является сокращением от немецкого слова нем.komplett,[5] в переводе на русский – «полный, целый», однако оригинальное название полного графа на немецком, нем.vollständiger Graph, не содержит буквы . По другой версии, такое обозначение полному графу было дано в честь Казимежа Куратовского, подчеркивая его вклад в развитие теории графов.[6]
Пусть , а – семейство деревьев ограниченных степеней, где для любого число вершин дерева равно . Тогда граф можно разложить на деревья , то есть существуют попарно рёберно-непересекающиеся копии графов в графе , и каждое ребро графа принадлежит хотя бы одной из этих копий.[8]
Число различных путей между двумя выделенными вершинами в полном графе вычисляется[9] по формуле , где через обозначена постоянная Эйлера, и
Индексы Хосойи (полные числа паросочетаний) полного графа являются телефонными числами[англ.] (-ое телефонное число – это число различных вариантов, которыми из человек можно выбрать набор пар людей, которые будут одновременно созваниваться друг с другом по телефону; в частности можно выбрать пустой набор), причем на полных графах реализуются максимально возможные значения индекса Хосойи для -вершинного графа.[10] Эти индексы образуют последовательность
Теорема Рамсея: Для любых натуральных чисел в любой -цветной раскраске рёбер достаточно большого полного графа содержится полный подграф с вершинами для некоторого цвета . В частности, для любых и , достаточно большой полный граф двухцветной (чёрно-белой) раскраски, содержит либо полный чёрный подграф из вершин, либо полный белый подграф из вершин.[12]
Теорема Турана: Обозначим через максимальное количество рёбер, которое может иметь граф с вершинами, не содержащий подграфа, изоморфного. Тогда, если , где — остаток от деления на , то этот максимум равен Среди всех графов на вершинах, не содержащих подграфа , этот максимум по количеству рёбер достигается на графе , определяемом следующим образом. Пусть это граф с вершинами, разобьём все вершины на «почти равных» групп (то есть возьмём групп по вершине и групп по вершин, если с остатком ) и соединим рёбрами все пары вершин из разных групп. Таким образом получим -дольный граф.[13]
Известна верхняя оценка на число пересечений полного графа, а именно . Впервые, в конце пятидесятых, вопрос о существовании такой оценки выдвинул Энтони Хилл,[15] известный британский художник-абстракционист. Ему удалось разработать несколько особых методов изображения полных графов, позволивших в дальнейшем эффективно исследовать их числа пересечений. Один из таких методов известен как «рисунок на алюминиевой банке», а другой – как «изображения Харари-Хилла».[16] Анализируя эти методы изображения математикам Блажеку и Коману удалось подтвердить[17] оценку Хилла для всех полных графов в 1964 году. Стоит отметить, что Хилл выдвинул куда более сильную гипотезу, а именно . Эта гипотеза известна как гипотеза Хилла и на данный момент подтверждена только для нескольких малых .[18] Гипотезу Хилла иногда называют гипотезой Гая, в честь британского математика Ричарда Гая, в чьей работе[19] за 1960 год содержатся прямые намеки на данный вопрос, или гипотезой Харари-Хилла, так как работа[20] Энтони Хилла и Фрэнка Харари за 1963 год, видимо, самая ранняя опубликованная математическая статья, содержащая точную формулировку этой гипотезы.[21]
Полные графы при являются планарными, то есть их число пересечений равно 0. В 1972 году Гай показал,[22] что гипотеза Хилла верна для всех , а в 2007 году Шэнджунь Пэн и Брюс Рихтер подтвердили[23] гипотезу Хилла для . В 2015 году Дэн Макуиллан, Шэнджунь Пэн и Брюс Рихтер выяснили,[24] что является нечетным числом, лежащим между 219 и 225 включительно. Вся известная на данный момент информация о точных значениях чисел пересечений полных графов представлена в таблице ниже.
или
Кроме того, в 1969 году Гай получил[25] нижнюю оценку на число пересечений полного графа, а именно
. При этом, ещё в 1960 году он обнаружил,[19] что существует предел , где , а в 2007 году Этьен де Клерк, Дмитрий Пасечник и Александр Схрейвер выяснили,[26] что верна оценка
.
Число прямолинейных пересечений
Для и число прямолинейных пересечений графа , которое обычно обозначается через , совпадает с его обыкновенным числом пересечений. Однако, число прямолинейных пересечений графа равно , тогда как .[20] В 2001 году Алекс Бродский, Стефан Дуроше и Эллен Гетнер[англ.] выяснили,[27] что число прямолинейных пересечений графа равно 62, при .
На данный момент точные значения известны для и . Суть точного вычисления заключается в нахождении соответствующих (и совпадающих) нижних и верхних оценок. Нижние оценки для были построены[28] совместно математиками Бернардо Абрего, Сильвией Фернандес-Мерчант, Хесусом Леаньосом и Геласио Салазаром в 2012 году, нижняя оценка для построена[29] совместно математиками Марио Сетина, Сесаром Эрнандес-Велесом, Хесусом Леаньосом и Кристобалем Вильялобос Гильеном в 2012 году, а все верхние оценки получены австрийским математиком Освином Айххольцером[30]. Кроме того, Айххольцер опубликовал[30] на своем сайте суммарную информацию обо всех известных на данный момент нижних и верхних оценках на вплоть до . Ниже приведена таблица с соответствующими оценками для .
или
, или
В 1994 году Эдвард Р. Шайнерман[англ.] и Герберт С. Уилф[англ.] обнаружили[31] неожиданную связь между числом прямолинейных пересечений графа и задачей Сильвестра "о четырех точках" из вероятностной геометрии.[32] Пусть — открытое множество на плоскости с конечной мерой Лебега. Обозначим через вероятность того, что если в равномерно и случайно выбраны четыре точки независимо друг от друга, то их выпуклая оболочка является четырехугольником, а через – инфимум значений по всем таким . Тогда верно равенство
где обозначает соответствующий биномиальный коэффициент. Продолжительное время уточнялись[33] верхняя и нижняя оценки на константу , и на данный момент лучшая нижняя[34] и лучшая верхняя[28] оценки получены совместно математиками Бернардо Абрего, Сильвией Фернандес-Мерчант, Хесусом Леаньосом и Геласио Салазаром, и составляют
Книжная толщина графа равна . Для любых граф имеет книжную толщину в точности .[37]
Симплексы и многогранники
Полный граф образуется из вершин и ребер (n-1)-симплекса. Так, например, геометрически образует множество вершин и ребер треугольника, – тетраэдра и так далее. Объединение всех семи вершин и двадцати одного ребра многогранника Часара, топологически эквивалентного тору, образует полный граф .
↑Marcus Schaefer, 2018, 1.3 Hill and the Crossing Number of Complete Graphs, p. 25: «the first
explicit statement in print seems to be in a paper by Harary and Hill».
Blažek J., Koman M. A minimal problem concerning complete plane graphs (англ.) // Miroslav Fiedler[англ.] Theory of graphs and its applications. — Czech Academy of Sciences, 1964. — P. 113-117.